

Azionamenti a vite

Unità viti a sfere BASA/Viti a rulli planetari PLSA

www.boschrexroth.com

Unità di viti a sfere BASA

Le unità viti a sfere rappresentano la soluzione efficiente per la trasformazione precisa del moto rotativo in moto longitudinale. Grazie all'esperienza pluriennale e alla competenza approfondita nel campo dell'ingegneria abbiamo sviluppato un programma di produzione in grado di soddisfare i requisiti più differenti. Sia che si tratti delle velocità lineari più elevate, dei massimi fattori di carico o di dimensioni minime d'ingombro, nella gamma dei prodotti Rexroth si troverà sempre la soluzione ideale. A fini di implementazione alla massima precisione e sicurezza di funzionamento sono a disposizione nel nostro programma componenti singoli perfettamente messi a punto l'uno con l'altro. Essi consentono la realizzazione efficiente di unità complete.

Dati dettagliati a partire da Pagina 7

Caratteristiche eccellenti

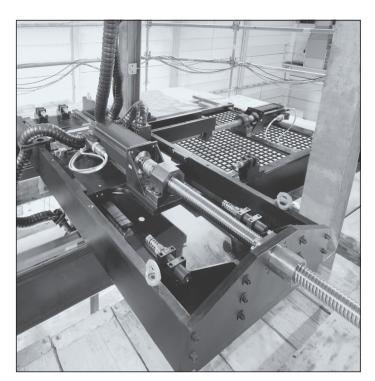
- Grande assortimento di prodotti, per soddisfare le richieste più differenti
- ▶ Funzionamento regolare e costante a tutti gli effetti
- ► Funzionamento particolarmente silenzioso grazie al collaudo e al ricircolo interno delle sfere
- ▶ Fattori di carico elevati grazie all'elevato numero di sfere
- **▶** Dimensioni compatte delle chiocciole

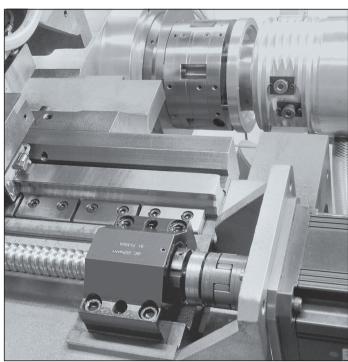
- ► Montaggio facilitato delle chiocciole, direzione di montaggio in base a specifiche individuali
- ► Chiocciole singole precaricate registrabili
- ► Ampio programma di serie differenti
- ► Componenti singoli complementari, reciprocamente messi a punto, quali supporto chiocciola, cuscinetti d'estremità, anche come unità supporto cuscinetti di vincolo, flangia motore in parte approntata per il montaggio

Viti a rulli planetari PLSA

La vite a rulli planetari PLSA è nel suo complesso un cinematismo di tipo planetario ad attrito volvente, dove i rulli sono i corpi volventi. Essa serve a trasformare il moto rotatorio in moto rettilineo o viceversa. In sé, il principio di funzionamento di una vite a rulli planetari è semplice da definire, ma nella prassi sono molteplici le caratteristiche tecniche da prevedere per soddisfare le esigenze applicative.

Le viti a rulli planetari sono concepite per la trasmissione di forze elevate e pertanto completano la gamma degli azionamenti a vite "verso l'alto".


Nelle viti a rulli planetari i corpi volventi sono dei rulli filettati (satelliti) le cui estremità sono alloggiate in due corone circolari forate. Il loro asse di rotazione è parallelo all'asse della vite centrale. La vite ruotando genera il moto rettilineo della chiocciola.


Dati dettagliati a partire da Pagina 193

Caratteristiche eccellenti

- ► Funzionamento regolare grazie al principio di sincronizzazione dei rulli planetari
- Funzionamento particolarmente silenzioso
- ► Lunga durata di vita
- ► Struttura compatta

- ► Elevata densità di potenza
- ▶ Possibilità di chiocciole precaricate
- ▶ Precisione di posizionamento e ripetibilità elevate
- ▶ Ridotto consumo di lubrificante

Avvisi

Note generali

▶ Montaggio in posizione non orizzontale

A causa dell'attrito ridotto tra vite e chiocciola non si verifica alcun autobloccaggio.

Le parti integranti del prodotto sono realizzate per prolungarne la durata di vita, non si esclude, tuttavia, in casi eccezionali, l'eventualità di difetti gravi e, nel montaggio orizzontale, l'eventuale caduta del componente mobile (ad es. della chiocciola della vite). Per questo motivo, in caso di posizione di montaggio non orizzontale, prevedere un dispositivo anticaduta supplementare.

Destinazione d'uso

- ► Gli azionamenti a vite sono componenti concepiti per la trasformazione di un moto rotatorio in un moto lineare e viceversa. Gli azionamenti a vite sono utilizzati esclusivamente all'interno di macchine per eseguire movimenti e posizionamenti.
- ▶ Il prodotto è destinato esclusivamente all'uso professionale e non privato.
- L'utilizzo conforme alla destinazione d'uso implica la lettura completa e la comprensione della rispettiva documentazione e in particolare delle "Avvertenze per la sicurezza".

Utilizzo non conforme

Ogni altro uso differente da quello descritto nel paragrafo "Destinazione d'uso" non è conforme e pertanto non è ammissibile. Se in applicazioni rilevanti sotto il profilo della sicurezza vengono montati o utilizzati prodotti non idonei, possono generarsi condizioni operative non volute nell'applicazione, che possono causare danni a persone e/o danni materiali. Utilizzare il prodotto in applicazioni rilevanti sotto il profilo della sicurezza se questo uso è specificato e consentito

In caso di utilizzo non conforme alla destinazione d'uso, Bosch Rexroth AG non risponderà della responsabilità per lesioni o danni causati dall'utilizzo non conforme del prodotto la cui responsabilità è a carico esclusivo dell'utilizzatore. L'utilizzatore si assume da solo i rischi in caso di utilizzo non conforme alla destinazione.

Rientra nell'uso non conforme alla destinazione del prodotto:

espressamente nella documentazione del prodotto.

▶ il trasporto di persone

Avvertenze generali per la sicurezza

- ▶ Osservare le norme e disposizioni di sicurezza del Paese in cui viene impiegato o utilizzato il prodotto.
- ▶ Osservare le norme vigenti sulla prevenzione degli infortuni e sulla tutela ambientale.
- ▶ Utilizzare il prodotto soltanto in condizioni tecniche perfette.
- ▶ Osservare i dati tecnici e le condizioni ambientali indicate nella documentazione del prodotto.
- ▶ Mettere in funzione il prodotto soltanto dopo aver accertato che il prodotto finale (ad esempio una macchina o un impianto) in cui è montato un prodotto sia conforme alle disposizioni specifiche del Paese, alle norme di sicurezza e alle norme applicative.
- Gli azionamenti a vite Rexroth non devono essere utilizzati in zone a rischio di esplosioni conformemente a direttiva ATEX 94/9/CE.
- ▶ Di norma, gli azionamenti a vite Rexroth non possono essere modificati o trasformati. Il gestore può eseguire unicamente i lavori descritti nella "Guida rapida" o nelle "Istruzioni di montaggio".
- ▶ In linea di massima, il prodotto non va smontato.
- ► Con velocità di corsa elevate subentra un certa rumorosità dovuta al prodotto. Adottare, all'occorrenza misure adeguate per proteggere l'udito.
- ▶ Osservare i requisiti di sicurezza particolari di determinati settori (ad es. costruzione di gru, teatri, tecnica alimentare) contemplati in leggi, direttive e norme.
- ▶ In linea di massima, osservare le norme seguenti: ISO 3408 e DIN 69051.

Direttive e norme

Gli azionamenti a vite Rexroth si prestano particolarmente ad applicazioni dinamiche lineari che richiedono movimenti e posizionamenti affidabili e precisi. L'industria delle macchine utensili e altri settori devono osservare una serie di norme e direttive. Queste prescrizioni variano notevolmente da un paese all'altro. Occorre pertanto essere perfettamente al corrente delle norme e direttive valide a livello regionale.

DIN EN ISO 12100

Questa normativa descrive la sicurezza delle macchine – concetti di base, valutazione dei rischi e riduzione dei rischi. Essa offre una visione generale e contiene istruzioni sullo sviluppo decisivo di macchine e del loro uso conforme alla destinazione.

Direttiva 2006/42/CE

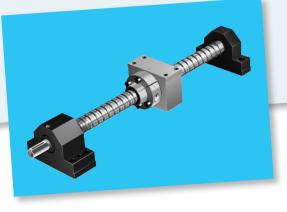
Questa direttiva per macchine descrive i requisiti fondamentali di sicurezza e di tutela della salute per la progettazione e la produzione di macchine. Il costruttore di una macchina o il suo delegato deve garantire che venga effettuata una valutazione dei rischi per accertare i requisiti di sicurezza e di tutela della salute in vigore. La macchina deve essere progettata e costruita tenendo conto dei risultati della valutazione dei rischi.

Direttiva 2001/95/CE

Questa direttiva descrive la sicurezza generale di tutti i prodotti messi in circolazione e destinati ai consumatori o da loro presumibilmente utilizzati, compresi i prodotti utilizzati dai consumatori nell'ambito di un servizio.

Direttiva 1999/34/CE

Questa direttiva descrive la responsabilità per danno da prodotti difettosi ed è valida per beni mobili prodotti industrialmente, indipendentemente dal fatto che siano stati trasformati o meno in un altro bene mobile o immobile.


Ordinanza (CE) n 1907/2006 (REACH)

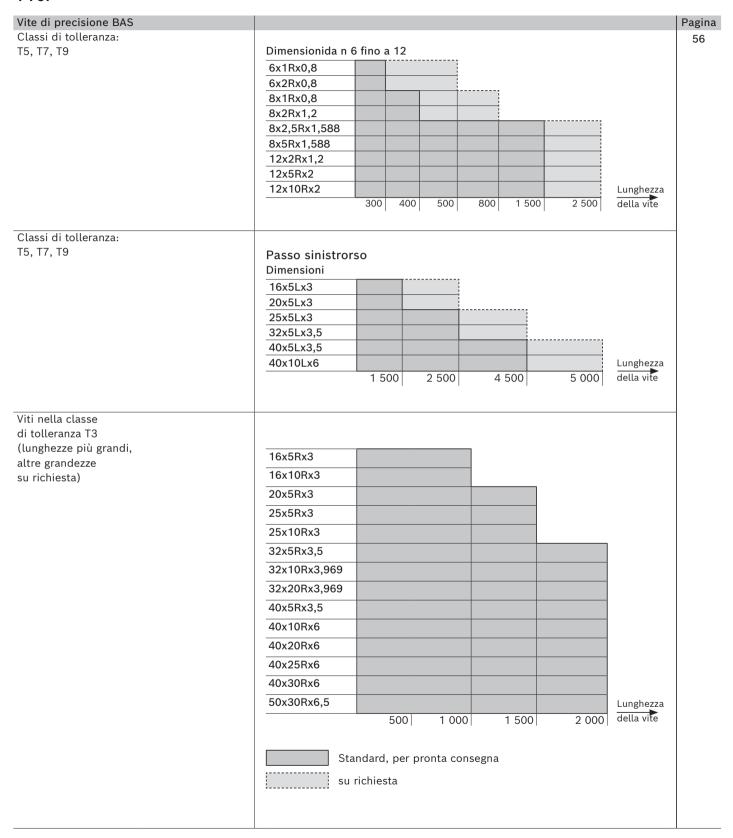
Questa ordinanza descrive le restrizioni in materia di immissione sul mercato e uso di sostanze e preparati pericolosi. Sono sostanze gli elementi chimici e i loro composti allo stato naturale oppure ottenuti mediante lavorazioni industriali. Sono preparati i miscugli, miscele o soluzioni composti da due o più sostanze.

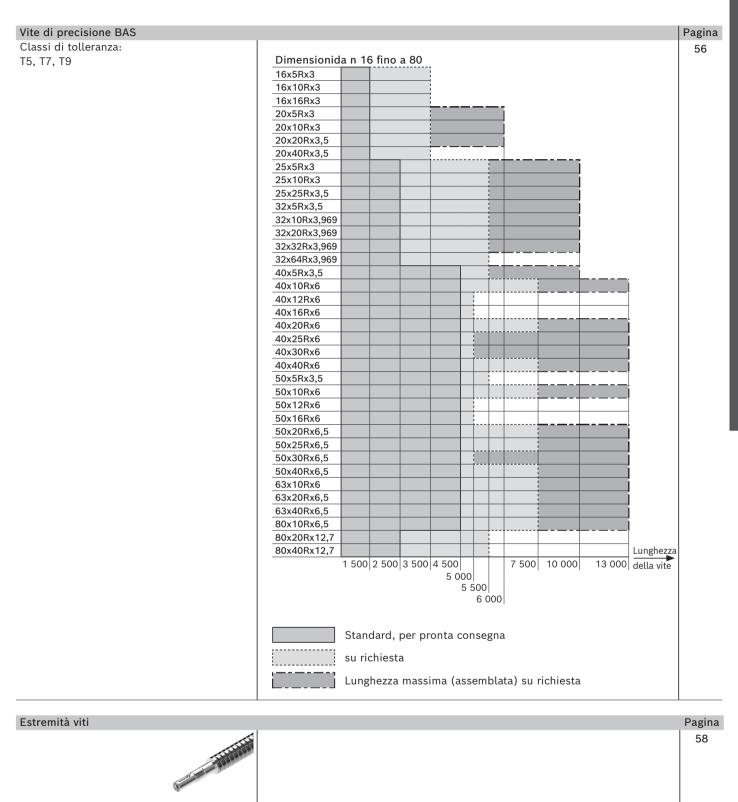
Unità di viti a sfere BASA

Indice unità viti a sfere

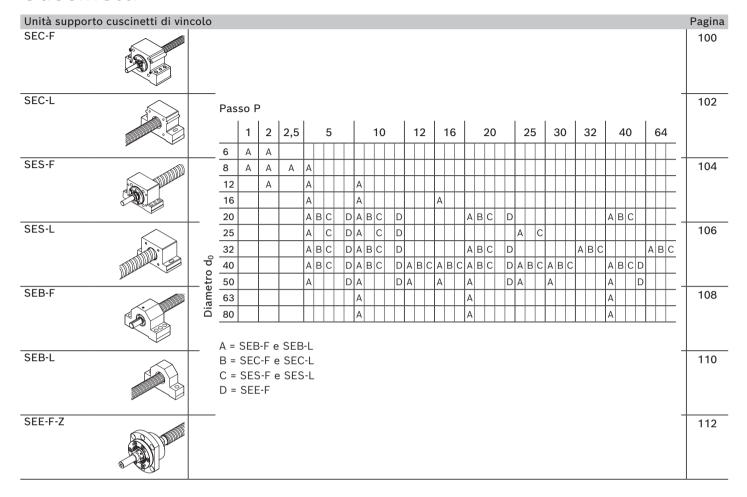
Indice	9
Presentazione dei prodotti	10
Chiocciole e supporti chiocciola	10
Viti	12
Cuscinetti	14
Accessori	15
Definizione di vite a sfere	16
Unità viti a sfere per tutte le applicazioni	18
Esempi d'applicazione	19
Richiesta d'offerta e ordinazione	20
Chiocciole, serie miniaturizzata	24
Panoramica versioni	24
Chiocciola singola flangiata FEM-E-B	25
Chiocciola singola flangiata FEM-E-S	26
Chiocciola singola con precarico registrabile SEM-E-S	27
Chiocciola singola cilindrica ZEM-E-S/ZEM-E-K	28
Chiocciola singola avvitabile ZEV-E-S	29
Chiocciole, serie Speed	30
Chiocciola singola flangiata con calotte di ricircolo FEP-E-S	31
Chiocciole, serie Standard	32
Panoramica versioni	33
Chiocciola singola flangiata FEM-E-S	34
Chiocciola singola flangiata FEM-E-B	36
Chiocciola singola con precarico registrabile SEM-E-S	38
Chiocciola singola con precarico registrabile SEM-E-C	40
Chiocciola singola cilindrica ZEM-E-S / ZEM-E-K / ZEM-E-A	42
Chiocciola singola avvitabile ZEV-E-S	44
Chiocciola doppia flangiata FDM-E-S	46
Chiocciola doppia flangiata FDM-E-B	48
Chiocciole, serie High Performance	50
Chiocciole, serie High Performance	50
Chiocciola singola flangiata FED-E-B	52
Chiocciola singola flangiata rotante FAR-B-S	54
Viti	56
Estremità viti	58
Abbreviazioni	59

Accessori	92
Panoramica	92
Supporti chiocciola MGS	94
Supporti chiocciola MGD	96
Supporti chiocciola MGA	98
Unità supporto cuscinetti di vincolo SEC-F, alluminio	100
Unità supporto cuscinetti di vincolo SEC-L, alluminio	102
Unità supporto cuscinetti di vincolo SES-F, acciaio	104
Unità supporto cuscinetti di vincolo SES-L, acciaio	106
Unità supporto cuscinetti di vincolo SEB-F	108
Unità supporto cuscinetti di vincolo SEB-L	110
Gruppo cuscinetti flangiati SEE-F-Z	112
Gruppo cuscinetti di vincolo LAF	114
Gruppo cuscinetti di vincolo LAN	116
Gruppo cuscinetti di vincolo LAD	118
Gruppo cuscinetti di vincolo LAL	120
Gruppo cuscinetti di vincolo LAS	122
Ghiere a tacche NMA, NMZ, NMG per vincolatura assiale	124
Utensile di montaggio per ghiera a tacche	125
Anello filettato GWR	125
Vite a sfere con unità di lubrificazione frontale Pattini di misura	126
	131 131
Chiocciola d'emergenza	131
Dati tecnici	132
Note tecniche	132
Condizioni di collaudo e classi di tolleranza	134
Precarico e rigidezza	138
Momenti d'attrito delle guarnizioni	144
Montaggio	146
Lubrificazione	150
Lubrificazione a grasso	150
Lubrificazione con ingrassatori a siringa o impianti	
progressivi per unità viti a sfere > Ø 12 mm	154
Lubrificazione a olio	162
Lubrificanti	168
Calcolo ed esempi	170
Calcolo	170
Velocità critica n _{cr}	174
Carico assiale ammesso sulla vite F _c (carico sulla vite)	175
Dimensionamento unità di azionamento FAR-B-S	176
Cuscinetti di vincolo	184
Indicazioni costruttive, montaggio	184
Fissaggio supporto	185
Lubrificazione dei cuscinetti di vincolo	186
Calcolo	187
	189
Formulario per servizio di calcolo	

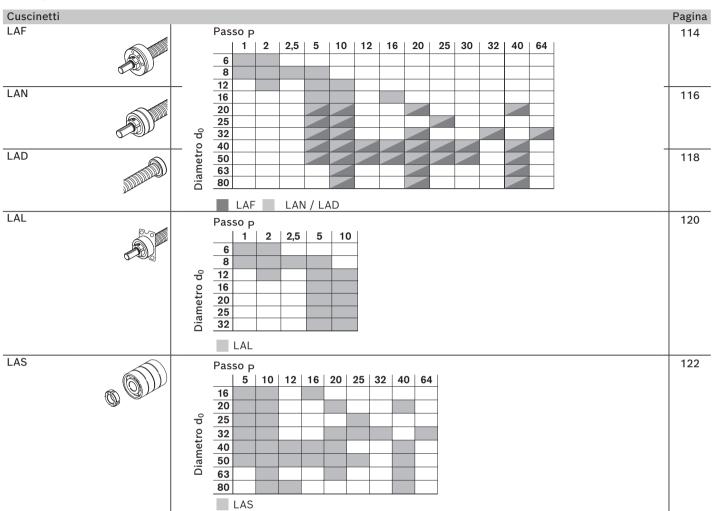

Chiocciole e supporti chiocciola


lezza 2 x D _w x 0,8 x 0,8 x 0,8 x 1,2 5 x 1,588 x 1,588 2 x 1,2 5 x 2 10 x 2 ihe	FEM	1-E-B	F	FEM-E	-5	SEI	M-E-S		ZEM-I		ZI	EV-E-S		da 25
x 0,8 x 0,8 x 0,8 x 1,2 5 x 1,588 x 1,588 2 x 1,2 5 x 2									∠EM-	E-K				
x 0,8 x 0,8 x 1,2 5 x 1,588 x 1,588 2 x 1,2 5 x 2														2:
x 0,8 x 1,2 5 x 1,588 x 1,588 2 x 1,2 5 x 2 10 x 2														
x 1,2 5 x 1,588 x 1,588 2 x 1,2 5 x 2 10 x 2								_						1
5 x 1,588 x 1,588 2 x 1,2 5 x 2 10 x 2											_			
x 1,588 2 x 1,2 5 x 2 10 x 2														
2 x 1,2 5 x 2 10 x 2														
5 x 2 10 x 2														3-
10 x 2														"
ihe														
	eq											High	mance	
	Speed											ligi l	nan	34
	0)							1						
		S	ш	ဟ	ပ	S	¥	∢		S	В	_ m		
X D _W	Ę.	Ψ̈́	ψ	单	<u> ம்</u>	Ψ̈́	ψ	ф	ب ښ	单	单	Ψ	ė,	
	EP.	E	E	⊟ E	E N	E	E	E	Ë	D	Δ		AR	
	ш				S		7	7	7	ш	ш	ш	ш	+
		L	L	L		L		\rightarrow				$\vdash \vdash$		3
							,							
		L	L	L		L	L					$\vdash \vdash$		
														+
-												\square		3
		L	L	L		L		_				\vdash		
-														
		L	L	L		L						\vdash		
														+
-														40
-														
												\square		
-						_						\vdash		
		L	L	L		L								
												\square		4:
														"
				_										
														+-
												$\vdash \vdash$		4
												$\vdash \vdash$		
				_								$\vdash \vdash$		
				_										+-
														4
												\vdash		+
												igsquare		4
0 x 12,7												Ш		
Con pas	sso c	dest	orso	o ne	l pro	grar	nma	star	ndar	d				
Eornibil	iont	tro h	rovi	ccin	o +0	mno				inic	tror			
		(x D _w	X Dw	X Dw	X Dw	X Dw	X D _w	X D _w	X Dw	X Dw	X Dw	X Dw	X Dw	X Dw

Serie High Performan	ce	Pagina
Chiocciola singola flangiata DIN 69051, parte 5 FED-E-B		52
Rotante Chiocciola singola flangiata FAR-B-S		54


Supporti chiocciola																									Pagin
MGS per serie Standard			Pass	ю Р	•														ı						94
FEP-E-S	100				5		10)	1:	2	16	6	2	0	:	25	3	0	,	32		40)	64	
FEM-E-S SEM-E-S			16	Α	В	А	В				А	В									I				
FDM-E-S	\checkmark		20	Α	В	CA	В	С					A	3 C							А				
MGD		- °p o.	25	А	В	А	В								А	В									96
per serie Standard		iametro	32	Α	В	СА	В	С					A E	з С					Α	В				А	
FEM-E-B		iam	40	Α	В	СА	В	С	П	В		В	A E	3 C	Τ	В	Γ	В			Α	В	С		
SEM-E-C FDM-E-B			50	Α	В	А	В		П	В	Α	В	A E	3	T		Г	В	П		А	В			
FED-E-B			63			Α	В					İ	E	3	T		Γ				Ť	В			
MGA			80			А	В						E	3								В			98
per chiocciola singola cilindric ZEM-E-S ZEM-E-K			A = B = C =	MG	àD																				
ZEM-E-S				MG	àD																				

Viti



Cuscinetti

Magazzino

Accessori I fattori di carico di cuscinetto e la vite a sfere devono stare in un rapporto ragionevole.

Singoli componenti	Pagina
Ghiera a tacche NMA, NMZ	124
Utensile di montaggio per NMA/NMZ/NMG	125
Anello filettato GWR	125
Unità di lubrificazione frontale	126
Pattini di misura	131
Chiocciola d'emergenza	131

Condizioni di collaudo	Pagina
	134

Definizione di vite a sfere

Secondo ISO 3408-1, una vite a sfere si definisce nel seguente modo:

il gruppo è costituito da vite dell'unità vite a sfere, chiocciola e sfere in grado di trasformare un moto rotatorio in un moto rettilineo e viceversa.

Pur essendo facile da definire, la funzione elementare di una vite a sfere presenta all'atto praticocaratteristiche tecniche e requisiti svariati.

Molteplici innovazione e adattamenti hanno contribuito ad ampliare il portfolio dei prodotti.

Le unità viti a sfere Rexroth offrono al progettista svariate possibilità per la soluzione di compiti di traslazione (trasporto) e di posizionamento con vite o anche con chiocciola rotante.

Da Rexroth avrete la certezza di trovare prodotti personalizzati per applicazioni e casi d'impiego speciali.

Le chiocciole flangiate della serie Standard sono disponibili nella versione con dimensioni per l'installazione Rexroth e DIN.

Per facilitare in futuro la scelta di serie e/o grandezze specifiche anche per quanto riguarda i tempi di consegna, abbiamo introdotto le categorie **A** e **B** per chiocciole. Le chiocciole vengono pertanto attribuite separatamente a una categoria per ogni singolo numero di identificazione. I **dadi A** (MTS) che corrispondono al catalogo di prodotti preferenziali GoTo Europe sono sempre disponibili a magazzino nelle quantità ordinate.

I **dadi B** (MTO) corrispondono al programma del catalogo e occorre richiederne la disponibilità.

Per consegne in Europa esiste un programma di preferenza GoTo Europa in funzione del numero di pezzi. I tempi speciali di consegna e le quantità sono riportati nel catalogo "Programma di preferenza GoTo Europa".

Quasi tutte le chiocciole singole nella versione con gioco assiale possono essere montate sulla vite dal cliente stesso, in particolare nei casi di manutenzione. La chiocciola singola con precarico registrabile della serie Standard consente inoltre la registrazione del precarico da parte del cliente.

Vengono inoltre riforniti, in più versioni, supporti chiocciola adatti per la serie Standard e cuscinetti di vincolo.

Viti di precisione

Disponibili in diverse grandezze e impareggiabile qualità, queste viti sono da anni parte integrante essenziale del nostro programma di produzione. L'ampia disponibilità del prodotto in tutto il mondo ci permette di reagire in tempi brevi per soddisfare tutte le richieste. Oltre alla disponibilità, offriamo anche il vantaggio del prezzo conveniente. Ogni chiocciola presente in questo catalogo può essere abbinata a vitidi precisione.

Le viti di precisione sono disponibili anche senza chiocciola per la lavorazione delle estremità viti da parte del cliente.

In particolari casi di manutenzione vi preghiamo di interpellarci.

Software di calcolo e configuratore prodotto

Il dimensionamento e il calcolo di unità viti a sfere (BASA) spetta allo strumento di calcolo Linear Motion Designer (LMD)

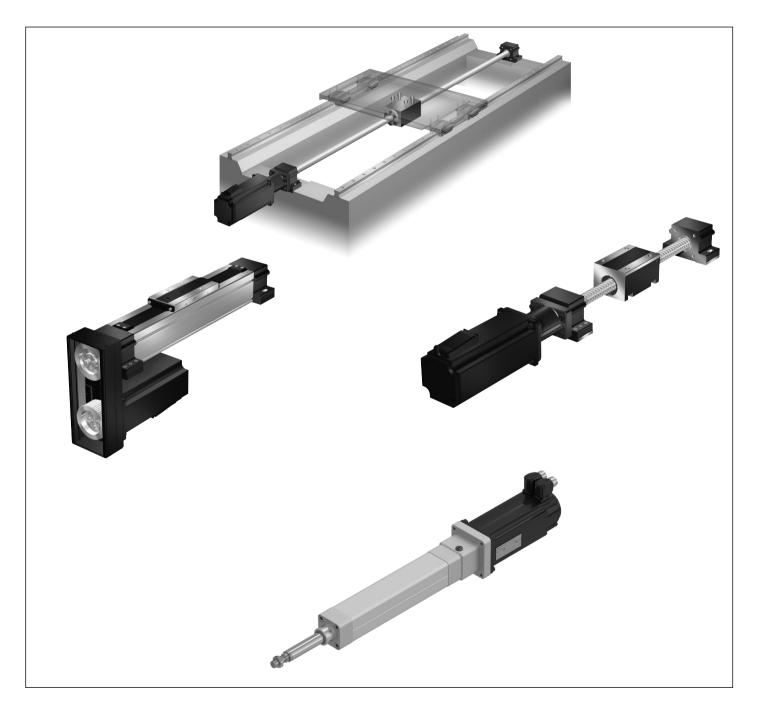
La creazione di modelli CAD ha luogo mediante il configuratore prodotto.

Consultare al riguardo il portale online Rexroth / eConfigurators and Tools.

www.boschrexroth.de/gewindetriebkonfigurator

Con l'ausilio del configuratore online è possibile configurare, rapidamente e con controllo dell'immagine, unità viti a sfere in base alle esigenze specifiche. Il tool verifica automaticamente la plausibilità di parametri modificati. La connessione eShop consente l'ordinazione diretta e 24 ore su 24 delle unità viti a sfere.

Vantaggi


- Funzionamento regolare grazie al sistema di ricircolo interno delle sfere
- Funzionamento particolarmente silenzioso grazie al trasferimento tangenziale delle sfere dalla pista al condotto di ricircolo e viceversa
- Chiocciola singola precaricata, anche registrabile
- Alto fattore di carico grazie all'elevato numero di sfere
- Dimensioni compatte delle chiocciole
- Nessuna parte sporgente, montaggio facilitato della chiocciola
- Superficie esterna priva di sporgenze
- Guarnizione con funzione raschiante
- Moltissime serie disponibili da magazzino

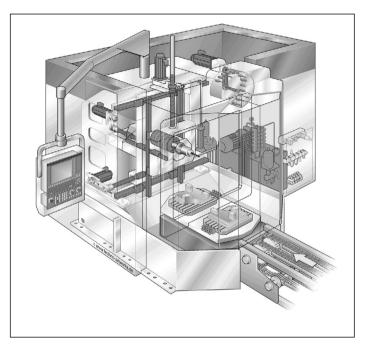
Unità viti a sfere per tutte le applicazioni

Unità di azionamento

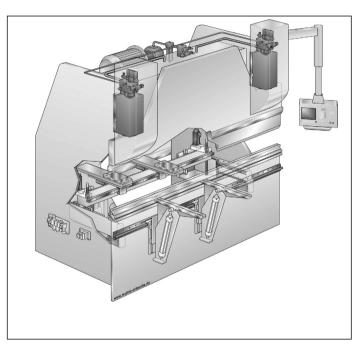
Troverete ulteriori soluzioni di sistema nel nostro catalogo di Unità di azionamento Rexroth. Esso comprende, tra le altre, unità viti a sfere coperte, anche con supporto vite integrato e servomotori AC compatibili.

Per compiti di posizionamento particolarmente complessi è stato sviluppato il sistema di misura integrato nelle guide a sfere e a rulli su rotaia IMS. Grazie ad esso si ottengono flessibilità e precisione massime nella progettazione e nell'impiego.

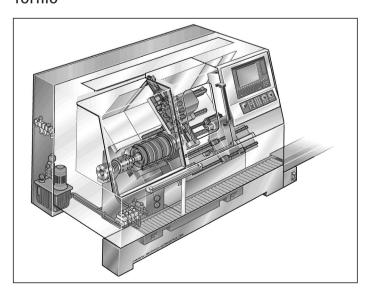
Esempi d'applicazione


Le unità viti a sfere Rexroth vengono impiegate con grande successo in molti settori:

- lavorazione ad asportazione di truciolo
- lavorazione di deformazione
- automazione e handling
- lavorazione del legno
- elettrotecnica ed elettronica
- industria della stampa e cartaria


- macchine per lo stampaggio a iniezione
- industria alimentare e dell'imballaggio
- tecnologia medicale
- industria tessile
- e altri

Centro di lavoro

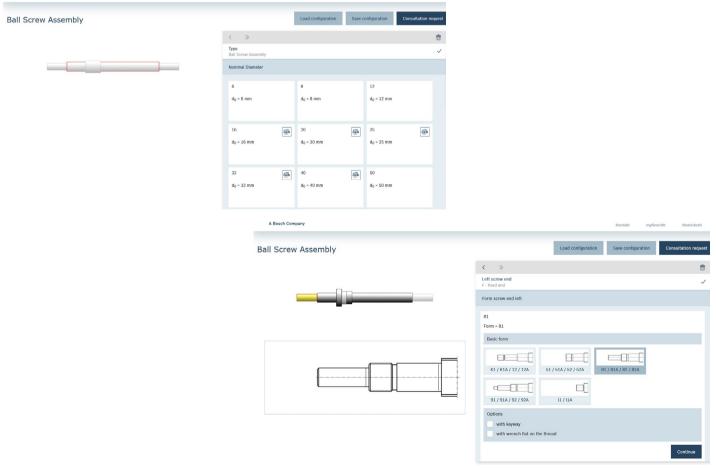

Asse verticale con chiocciola rotante

Pressa piegatrice

Tornio

Richiesta d'offerta e ordinazione

Tutte le chiocciole e le viti, compresa la lavorazione delle estremità, possono essere descritte, richieste e rappresentate con i dati per l'ordinazione come vite a sfere completa.

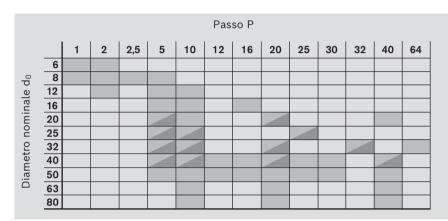

Abbiamo tenuto conto di tutti i criteri di selezione precedenti e ne abbiamo introdotto di nuovi. La varietà delle combinazioni e specifiche possibili è fondamentalmente senza limiti. Trova particolare considerazione la definizione della lavorazione delle estremità di una vite. Essa è approntata in diverse varianti di disegno, in modo che possa essere elaborata una soluzione adeguata per pressoché ogni applicazione. Per una richiesta d'offerta compilare semplicemente il formulario riportato alla fine del catalogo.

- Per un modello di disegno di fabbricazione come file CAD, nei formati file Pro/E, STEP o DXF, proponiamo la trasmissione elettronica dei dati.
- Se il disegno è disponibile soltanto su carta, accettiamo sia la scansione, sia l'invio per posta.
- Qualora non esistessero disegni di fabbricazione, specificate le vostre richieste sulla base dei dati per l'ordinazione variabili. Il catalogo rimanda in diversi punti a tali possibilità.

In caso di ordinazione viene assegnato un numero identificativo per ciascuna vite a sfere personalizzata. Per richieste di informazioni od ordinazioni ricorrenti è sufficiente indicare questo numero. Se si conoscono i dati specifici per l'ordinazione, sarà facilmente possibile generare online persino un modello CAD in formati file differenti. Rexroth offre in Internet, sia al riguardo, sia per l'ordinazione diretta di prodotti, un configuratore prodotto.

Al sito www.boschrexroth.de/gewindetrieb-konfigurator potrete combinare soluzioni specifiche in modo rapido e semplice. Con questo nuovo strumento online configurerete passo per passo, con controllo dell'immagine, la vite a sfere o vite a rulli planetari realizzata secondo i vostri desideri. Possono essere selezionate qui tutte le opzioni del catalogo, nonché modifiche definite del prodotto. Il tool verifica automaticamente la plausibilità di parametri modificati. Al termine della configurazione potranno essere scaricati dati 2D e 3D in tutti i formati correnti. Per quanto riguarda la lavorazione delle estremità è possibile optare tra varianti standard secondo catalogo e soluzioni individuali. Nel realizzare le estremità delle viti a sfere e delle viti a rulli planetari, Rexroth fa in modo che coincidano con la costruzione annessa a cura del cliente e soddisfino i requisiti desiderati. Il configuratore integrato nell'eShop consente sia di determinare un prezzo per gli azionamenti a vite specifici del cliente, sia di ordinare il prodotto direttamente.

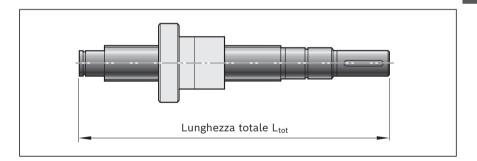
Lo spettro di grandezze selezionabili di diametri della vite va dai 6 agli 80 millimetri per unità viti a sfere. Oltre a ciò possono essere selezionati tutti i tipi di chiocciola.

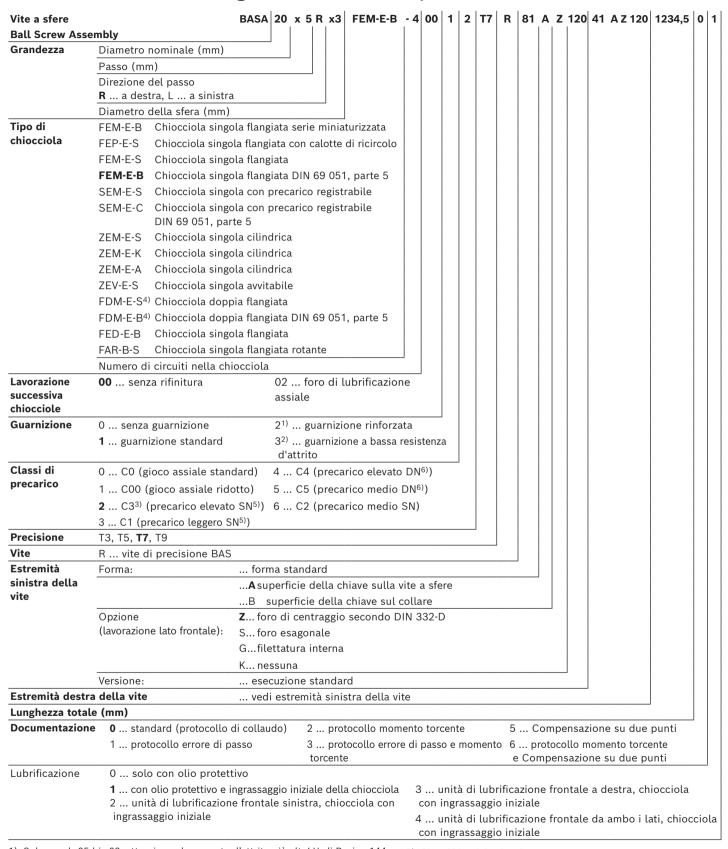

I clienti registrati nell'eShop possono generare, oltre alla richiesta di modelli CAD, anche disegni di fabbricazione. Il disegno può essere utilizzato immediatamente nella nostra produzione con un vantaggio in termini di tempi di realizzazione e consegna. In questo caso è inoltre possibile l'ordinazione diretta nell'eShop.

Nell'eventualità di configurazione senza previa registrazione verranno messi a disposizione solo modelli CAD. Ad essi possiamo fare riferimento in caso di ordinazione e ricavarne un disegno di fabbricazione.

Andate all'eShop con questo link: https://www.boschrexroth.com/eshop

I dati per l'ordinazione a Pagina 22 comprendono tutti i parametri di una vite a sfere. Dopo la definizione elementare di diametro nominale, passo e lunghezza totale, vengono esaminate in modo strutturato tutte le opzioni selezionabili.


Diametri nominali, passi chiocciole



grandezza disponibile delle chiocciole combinabile con VSE

Lunghezza totale L_{tot} di una vite a sfere

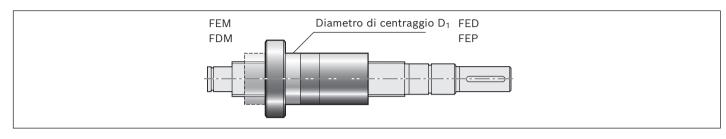
Sistematica delle sigle BASA / dati per l'ordinazione

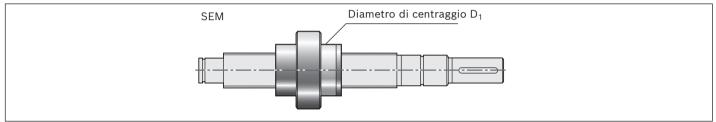
¹⁾ Solo per d $_0$ 25 bis 63; attenzione al momento d'attrito più alto! Vedi Pagina 144

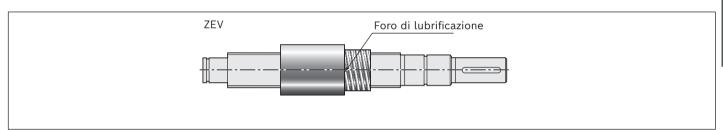
6) DN = Chiocciola doppia

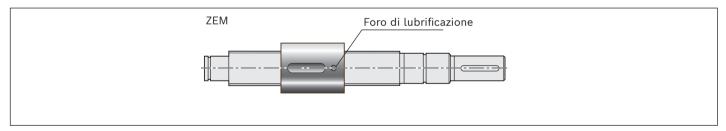
²⁾ Per grandezze vedi Pagina 144

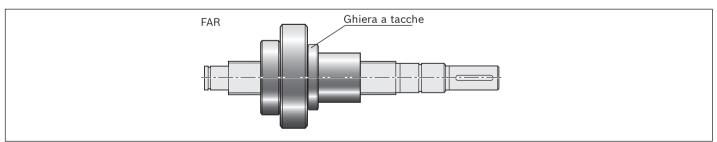
³⁾ solo per d_0 da 16 a 80

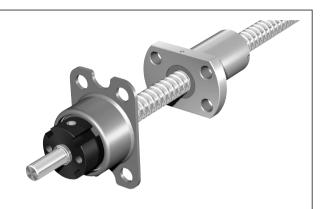

⁴⁾ FDM-E-B e FDM-E-S disponibile solo come vite a sfere completa.


⁵⁾ SN = Chiocciola singola


Direzione di montaggio dei tipi di chiocciola


Definizione: il diametro di centraggio di chiocciole flangiate, la ghiera a tacche di chiocciole rotanti o il foro di lubrificazione di chiocciole cilindriche sono orientati verso l'estremità destra della vite.


Avviso: L'unità di lubrificazione frontale viene fornita completamente montata con la vite a sfere.



ata

Chiocciole, serie miniaturizzata

Serie miniaturizzata

Le unità di viti a sfere della serie miniaturizzata sono disponibili nel diametro nominale 6 – 12 mm, nonché in passi di 1 – 10 mm. I tipi di chiocciola comprendono chiocciole singole flangiate, cilindriche e con precarico registrabile nonché chiocciole singole avvitabili.

Panoramica versioni

Classi di precarico

Opzione	Classe di precarico	Definizione
0	C0	Gioco assiale standard
1	C00	Gioco assiale ridotto
2	C3	Precarico alto (chiocciola singola)
3	C1	Precarico leggero (chiocciola singola)
4	C4	Precarico alto (chiocciola doppia)
5	C5	Precarico medio (chiocciola doppia)
6	C2	Precarico medio (chiocciola singola)

Per la correlazione delle classi di precarico vedi versioni delle chiocciole

Chiocciola singola flangiata FEM-E-B

Dimensioni per l'installazione Rexroth flangia di forma B

Con guarnizioni

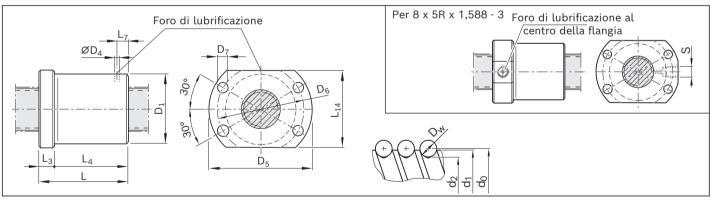
Classe di precarico: C0, C00 dimensioni eccezionali 8 x 2,5/5

e 12 x 5/10:

Classe di precarico C1.

Classe di tolleranza: T5, T7, T9

= diametro nominale


diametro della sferanumero di circuiti

(R = filettatura destrorsa)

											_	_
BASA	8 x 2R x 1,2	FEM-E-B - 4	00	1	1	T7	R	831K062	41K050	250	0	1

Categoria	Grandezza	Numero di	Fattori di	carico ³⁾	Velocità ¹⁾
		identificazione	dyn. C	stat. C ₀	V _{max}
	d ₀ x P x D _w - i		(N)	(N)	(m/min)
Α	6 x 1R x 0,8 - 3 ²⁾	R1532 100 16	1 080	1 030	6
Α	6 x 2R x 0,8 - 3 ²⁾	R1532 120 16	1 070	1 020	12
Α	8 x 1R x 0,8 - 4 ²⁾	R1532 200 16	1 310	1 850	6
Α	8 x 2R x 1,2 - 4 ²⁾	R1532 220 16	2 360	2 950	12
Α	8 x 2,5R x 1,588 - 3	R1532 230 06	2 640	2 800	15
В	8 x 5R x 1,588 - 3	R1532 260 06	2 500	2 650	30
Α	12 x 2R x 1,2 - 4 ²⁾	R1532 420 06	2 690	4 160	12
Α	12 x 5R x 2 - 3	R1532 460 06	4 560	5 800	30
Α	12 x 10R x 2 - 2	R1532 490 06	3 000	3 600	60

- 1) Vedi "Fattore di velocità d $0\cdot$ n" a pagina 133 e "Carico assiale ammesso sulla vite Fc (carico sulla vite)" a pagina 175 "Velocità critica ncr" a pagina 174
- 2) Fornitura esclusivamente come unità di vite a sfere BASA completa.
- 3) I fattori di carico sono validi solamente per la classe di tolleranza T5. Con le altre classi di tolleranza vogliate tener conto del fattore di correzione f_{ac} a pagina 133.

Grandezza	(mm)													Massa
	d ₁	d_2	D_1	D_4	D ₅	D ₆	D ₇	L	L ₃	L_4	L ₇	L ₁₄	S	m
d ₀ x P x D _w - i			g6											(kg)
6 x 1R x 0,8 - 3	6,0	5,3	12	1,5	24	18	3,4	11,6	3,5	8,1	3,5	16	_	0,020
6 x 2R x 0,8 - 3	6,0	5,3	12	1,5	24	18	3,4	14,6	3,5	11,1	3,0	16	_	0,020
8 x 1R x 0,8 - 4	8,0	7,3	16	1,5	28	22	3,4	15,5	6,0	9,5	3,5	19	_	0,035
8 x 2R x 1,2 - 4	8,0	7,0	16	1,5	28	22	3,4	19,5	6,0	13,5	3,0	19	_	0,050
8 x 2,5R x 1,588 - 3	7,5	6,3	16	2,0	28	22	3,4	16,0	6,0	10,0	3,0	19	_	0,030
8 x 5R x 1,588 - 3	7,5	6,3	16	_	28	22	3,4	23,5	6,0	17,5	_	19	МЗ	0,050
12 x 2R x 1,2 - 4	11,7	10,8	20	2,0	37	29	4,5	19,0	8,0	11,0	2,5	24	_	0,055
12 x 5R x 2 - 3	11,4	9,9	22	2,0	37	29	4,5	28,0	8,0	20,0	6,0	24	-	0,075
12 x 10R x 2 - 2	11,4	9,9	22	2,0	37	29	4,5	33,0	8,0	25,0	8,0	24		0,085

Chiocciola singola flangiata FEM-E-S

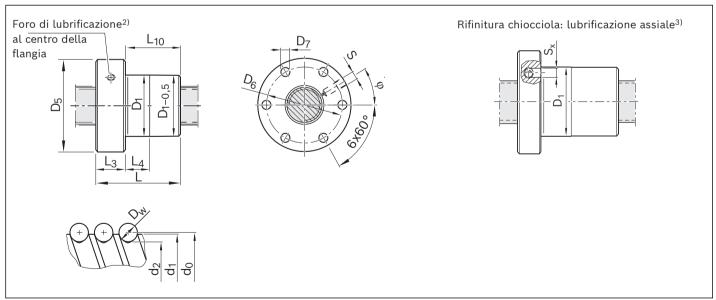
Dimensioni per l'installazione Rexroth

Con guarnizioni

Classe di precarico: C0, C00, C1 Classe di tolleranza: T5, T7, T9

 d_0 = diametro nominale

P = passo (R = filettatura destrorsa)


D_W = diametro della sfera i = numero di circuiti

BASA	12 x 5R x 2	FEM-E-S - 3	00	1	1	T7	R	81K060	41K060	250	0	1

Catego-	Grandezza	Numero di	Fattori c	li carico ²⁾	Velocità ¹⁾
ria		identificazione	dyn. C	stat. C ₀	V _{max}
	d ₀ x P x D _w - i		(N)	(N)	(m/min)
Α	8 x 2,5R x 1,588 - 3	R1532 230 03	2 640	2 800	15
Α	12 x 5R x 2 - 3	R1532 460 23	4 560	5 800	30
Α	12 x 10R x 2 - 2	R1532 490 13	3 000	3 600	60

- 1) Vedi "Fattore di velocità d0 · n" a pagina 133 e "Velocità critica ncr" a pagina 174
- I fattori di carico sono validi solo per la classe di tolleranza T5.
 Con le altre classi di tolleranza vogliate tener conto del fattore di correzione f_{ac} a pagina 133.

3) Il foro di lubrificazione assiale S_x si trova sempre sul primitivo D_6 dell'unità chiocciola.

Grandezza	(mm)													Massa
	d ₁	d ₂	D ₁	D_5	D ₆	D ₇	L	L ₃	L ₄	L ₁₀	S ⁴⁾	S _x	φ	m
$d_0 \times P \times D_w - i$			g6										(°)	(kg)
8 x 2,5R x 1,588 - 3	7,5	6,3	16	30	23	3,4	16	8	8,0	8	Ø4	-	30,0	0,05
12 x 5R x 2 - 3	11,4	9,9	24	40	32	4,5	28	12	10,0	16	M6	4	330,0	0,12
12 x 10R x 2 - 2	11,4	9,9	24	40	32	4,5	33	12	16,0	21	M6	4	330,0	0,14

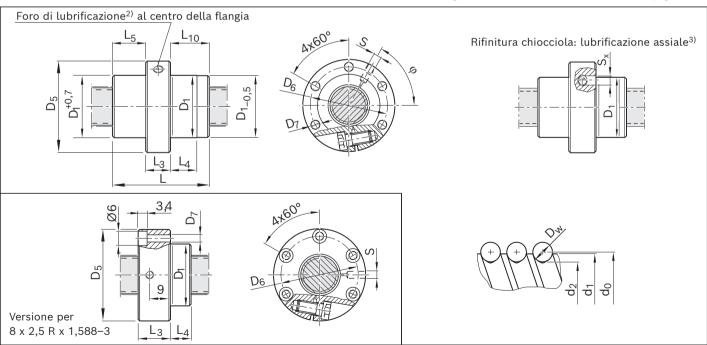
⁴⁾ Versione raccordo di lubrificazione: lamatura $L_3 \le 15$ mm; per grandezza 8×2.5 è compreso nella fornitura un nipplo a imbuto DIN 3405.

Chiocciola singola con precarico registrabile SEM-E-S

Dimensioni per l'installazione Rexroth

Con guarnizioni Precarico registrabile Classe di tolleranza: T5, T7

d₀ = diametro nominale


P = passo (R = filettatura destrorsa)

D_W = diametro della sfera i = numero di circuiti

BASA 12 x 5R x 2	SEM-E-S - 3	00	1 2	T7	R	81K060	41K060	250	0	1	
------------------	-------------	----	-----	----	---	--------	--------	-----	---	---	--

Categoria	Grandezza	Numero di	Fattori di ca	ırico ²⁾	Velocità ¹⁾	Diametro di cent	raggio D ₁
		identificazione	dyn. C	stat. C ₀	V _{max}	secondo la regis	trazione
	d ₀ x P x D _w - i		(N)	(N)	(m/min)	min. (mm)	max. (mm)
В	8 x 2,5R x 1,588 - 3	R1532 230 04	2 640	2 800	15	15,953	15,987
A	12 x 5R x 2 - 3	R1532 460 24	4 560	5 800	30	23,940	23,975
В	12 x 10R x 2 - 2	R1532 490 14	3 000	3 600	60	23,940	23,975

- 1) Vedi "Fattore di velocità d0 · n" a pagina 133 e "Velocità critica ncr" a pagina 174
- 2) I fattori di carico sono validi solamente per la classe di tolleranza T5. Con le altre classi di tolleranza vogliate tener conto del fattore di correzione fac a pagina 133.

3) Il foro di lubrificazione assiale S_{x} si trova sempre sul primitivo D_{6} dell'unità chiocciola.

Misure	(mm)														Massa
	d ₁	d ₂	D ₁	D ₅	D ₆	D ₇	L	L ₃	L ₄	L_5	L ₁₀	S ⁴⁾	S _x	φ	m
$d_0 \times P \times D_w - i$			f9											(°)	(kg)
8 x 2,5R x 1,588 - 3	7,5	6,3	16	30	23	3,4	16	13	3,0	_	3,0	Ø4	_	0	0,06
12 x 5R x 2 - 3	11,4	9,9	24	40	32	4,5	28	12	8,0	8,0	8,0	M6	4	55	0,12
12 x 10R x 2 - 2	11,4	9,9	24	40	32	4,5	33	12	10,5	10,5	10,5	M6	4	55	0,13

⁴⁾ Versione raccordo di lubrificazione: lamatura $L_3 \le 15$ mm; per grandezza 8×2.5 è compreso nella fornitura un nipplo a imbuto DIN 3405.

Chiocciola singola cilindrica ZEM-E-S/ZEM-E-K

Dimensioni per l'installazione Rexroth

Con guarnizioni

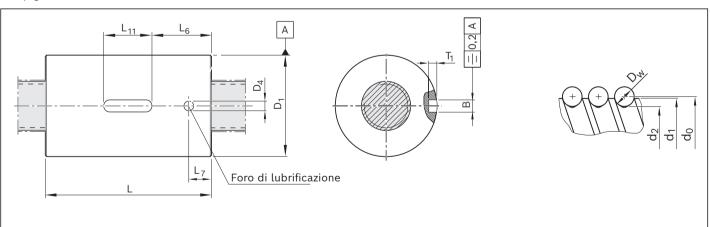
Classe di precarico: C0, C00, C1

Eccezione misura 6 x 1/2, 8 x 1/2, 12 x 2:

Classe di precarico C0, C00

Classe di tolleranza: T5, T7, T9

 d_0 = diametro nominale


P = passo (R = filettatura destrorsa)

D_W = diametro della sfera i = numero di circuiti

- 1) Fornitura esclusivamente come unità di vite a sfere BASA completa.
- vedi "Fattore di velocità d0 · n" a pagina 133 e "Carico assiale ammesso sulla vite Fc (carico sulla vite)" a pagina 175 velocità critica n_{cr} alla pagina 174
- I fattori di carico sono validi solo per la classe di tolleranza T5.
 Con le altre classi di tolleranza vogliate tener conto del fattore di correzione f_{ac} a pagina 133.

	BASA	12 x 5R x 2	ZEM-E-S - 3	00	1	1	T7	R	81K060	41K060	250	0	1	
--	------	-------------	-------------	----	---	---	----	---	--------	--------	-----	---	---	--

Categoria	Grandezza	Numero di	Fattori di	carico ³⁾	Velocità ²⁾
	d ₀ x P x D _w - i	identificazione	dyn. C	stat. Co	V _{max}
			(N)	(N)	(m/min)
В	6 x 1R x 0,8 - 3 1)	R1532 102 10	1 080	1 030	6
В	6 x 2R x 0,8 - 3 ¹⁾	R1532 122 10	1 070	1 020	12
В	8 x 1R x 0,8 - 4 ¹⁾	R1532 202 10	1 310	1 850	6
Α	8 x 2R x 1,2 - 4 ¹⁾	R1532 222 10	2 360	2 950	12
Α	8 x 2,5R x 1,588 - 3	R1532 230 02	2 640	2 800	15_
В	8 x 5R x 1,588 - 3	R1532 260 02	2 500	2 650	30
Α	12 x 2R x 1,2 - 4 1)	R1532 422 01	2 690	4 160	12
Α	12 x 5R x 2 - 3	R1532 460 32	4 560	5 800	30
A	12 x 5R x 2 - 3	R1532 462 25	4 560	5 800	30
Α	12 x 10R x 2 - 2	R1532 490 22	3 000	3 600	60
Α	12 x 10R x 2 - 2	R1532 492 00	3 000	3 600	60

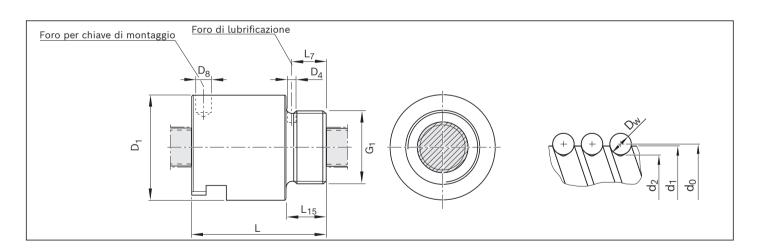
Grandezza	(mm)										Massa
d ₀ x P x D _w - i	d ₁	d_2	D ₁	D_4	L	L ₆	L ₇	L ₁₁	В	T ₁	m
			g6		±0,1			+0,2	P9	+0,1	(kg)
6 x 1R x 0,8 - 3 1)	6,0	5,3	12	1,5	11,6	-	3,5	-	-	-	0,014
6 x 2R x 0,8 - 3 ¹⁾	6,0	5,3	12	1,5	14,6	-	3,1	-	-	-	0,015
8 x 1R x 0,8 - 4 ¹⁾	8,0	7,3	16	1,5	15,5	5,00	3,5	6	3	1,2	0,023
8 x 2R x 1,2 - 4 1)	8,0	7,0	16	1,5	19,5	5,00	3,1	6	3	1,8	0,037
8 x 2,5R x 1,588 - 3	7,5	6,3	16	2	16,0	5,00	3,5	6	3	1,8	0,02
8 x 5R x 1,588 - 3	7,5	6,3	16	2	23,5	7,75	3,5	8	3	1,8	0,04
12 x 2R x 1,2 - 4 1)	11,7	10,8	21	2	19,0	5,50	3,5	8	3	1,8	0,03
12 x 5R x 2 - 3	11,4	9,9	24	2	28,0	8,00	3,5	12	5	3,0	0,06
12 x 5R x 2 - 3	11,4	9,9	21	2	28,0	8,00	3,5	12	3	1,8	0,04
12 x 10R x 2 - 2	11,4	9,9	24	2	33,0	10,50	3,5	12	5	3,0	0,07
12 x 10R x 2 - 2	11,4	9,9	21	2	33,0	10,50	3,5	12	3	1,8	0,05

Chiocciola singola avvitabile ZEV-E-S

Dimensioni per l'installazione Rexroth

Con guarnizione a bassa resistenza d'attrito Classe di precarico: C0, C00, C1

Classe di tolleranza: T5, T7, T9



destrorsa) D_W = diametro della sfera = numero di circuiti

BASA 12 x	5R x 2 ZEV-E-S - 3	3 00	3 1	T7	R	81K060	41K060	250	0	1
-----------	--------------------	------	-----	----	---	--------	--------	-----	---	---

Categoria	Grandezza	Numero di	Fattori di	carico ²⁾	Velocità ¹⁾
		identificazione	dyn. C	stat. C ₀	V _{max}
	d ₀ x P x D _w - i		(N)	(N)	(m/min)
В	8 x 2,5R x 1,588 - 4	R2542 230 05	3 490	3 910	15,0
Α	12 x 5R x 2 - 3	R2542 430 05	4 560	5 800	30,0
Α	12 x 10R x 2 - 2	R2542 430 15	3 000	3 600	60,0

- 1) Vedi "Fattore di velocità d0 · n" a pagina 133 e "Velocità critica ncr" a pagina 174
- 2) I fattori di carico sono validi solo per la classe di tolleranza T5. Con le altre classi di tolleranza vogliate tener conto del fattore di correzione fac a pagina 133.

Grandezza	(mm)									Massa
	d ₁	d ₂	D ₁	D_4	D ₈	G ₁	L	L ₇	L ₁₅	m
$d_0 \times P \times D_w - i$			h10				±0,3			(kg)
8 x 2,5R x 1,588 - 4	7,5	6,3	20,0	1,5	3,2	M18x1	20,5	6,7	8	0,06
12 x 5R x 2 - 3	11,4	9,9	25,5	2,7	3,2	M20 x 1,0	36	8,5	10	0,09
12 x 10R x 2 - 2	11,4	9,9	25,5	2,7	3,2	M20 x 1,0	40	8,5	10	0,10

Chiocciole, serie Speed

Serie Speed

Le unità viti a sfere della serie speed sono disponibili nel diametro nominale 20 – 32 mm, nonché in passi di 25 – 64 mm. Il tipo di chiocciola è una chiocciola singola flangiata. La serie Speed è caratterizzata da una struttura compatta. Viti a più principi consentono un elevato fattore di carico con forma costruttiva ridotta della chiocciola. Con i passi superquadri è possibile ottenere velocità di corsa elevate.

Classi di precarico

Classe di precarico	Definizione
CO	Gioco assiale standard
C00	Gioco assiale ridotto
C3	Precarico alto (chiocciola singola)
C1	Precarico leggero (chiocciola singola)
C4	Precarico alto (chiocciola doppia)
C5	Precarico medio (chiocciola doppia)
C2	Precarico medio (chiocciola singola)
	C0 C00 C3 C1 C4 C5

Per la correlazione delle classi di precarico vedi versioni delle chiocciole

Chiocciola singola flangiata con calotte di ricircolo FEP-E-S

Dimensioni per l'installazione

Con guarnizioni

Classe di precarico: C0, C00, C1 Classe di tolleranza: T5, T7, T9

A Non applicare alcun carico sulle calotte di ricircolo in plastica ed evitare collisioni con i fine corsa.

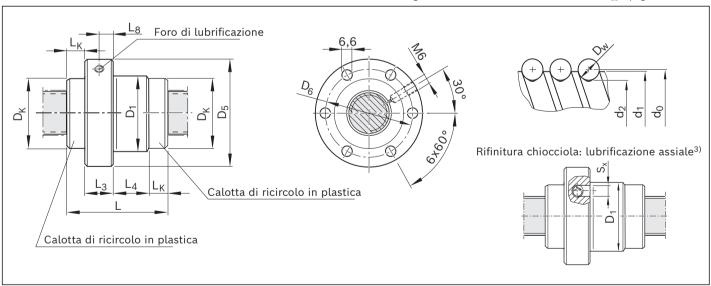
Nota: Fornitura esclusivamente

come unità vite a sfere

BASA completa.

Dati per l'ordinazione:

BASA	25 x 25R x 3,5	FEP-E-S - 4.8	00	1	0	T5	R	81K170	41K170	1100	0	1
------	----------------	---------------	----	---	---	----	---	--------	--------	------	---	---


d₀ = diametro nominale

P = passo (R = filettatura destrorsa)

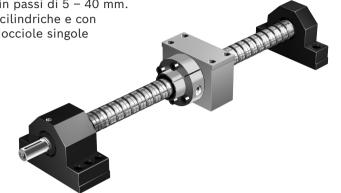
D_W = diametro della sfera i = numero di circuiti

Categoria	Grandezza	Numero di	Fattori di	Velocità ¹⁾	
		identificazione	dyn. C	stat. C ₀	V _{max}
	d ₀ x P x D _w - i		(N)	(N)	(m/min)
Α	20 x 40R x 3,5 - 4	R2522 100 11	14 000	26 200	240
Α	25 x 25R x 3,5 - 4,8	R2522 200 01	19 700	39 400	150
Α	32 x 32R x 3,969 - 4,8	R2522 300 01	26 300	57 600	150
Α	32 x 64R x 3,969 - 4	R2522 300 21	21 100	49 000	300

- 1) Vedi "Fattore di velocità d
0 \cdot n" a pagina 133 e "Velocità critica ncr" a pagina 174
- I fattori di carico sono validi solo per la classe di tolleranza T5.
 Con le altre classi di tolleranza vogliate tener conto del fattore di correzione f_{ac} a pagina 133.

3) Il foro di lubrificazione assiale S_{x} si trova sempre sul primitivo D_{6} dell'unità chiocciola.

Grandezza	(mm)												Massa
	d ₁	d_2	D ₁	D_5	D ₆	D_K	L	L ₃	L ₄	L ₈	L _K	S _x	m
$d_0 \times P \times D_w - i$			g6				±0,5						(kg)
20 x 40R x 3,5 - 4	19	16,4	38	63	50	37,5	57	12	23	8,0	11	4	0,51
25 x 25R x 3,5 - 4,8	24	21,4	48	73	60	40,0	52	12	14	5,0	13	4	0,51
32 x 32R x 3,969 - 4,8	31	27,9	56	80	68	50,0	68	15	21	7,7	16	4	0,78
32 x 64R x 3,969 - 4	31	27,9	56	80	68	50,0	88	15	45	7,5	14	4	1,06


Chiocciole, serie Standard

Le unità viti a sfere della serie Standard

sono disponibili nel diametro nominale 16 - 80 mm, nonché in passi di 5 - 40 mm. I tipi di chiocciola comprendono chiocciole singole flangiate, cilindriche e con precarico registrabile, chiocciole doppie flangiate, nonché chiocciole singole avvitabili.

Vantaggi

- Grande capacità di carico assiale
- Elevata dinamicità
- Elevata rigidezza
- Attrito ridotto
- Disponibili in molte versioni e grandezze
- Supporto chiocciola con superficie laterale di riferimento (su entrambi i lati)

Classi di precarico

Opzione	Classe di precarico	Definizione						
0	C0	Gioco assiale standard						
1	C00	Gioco assiale ridotto						
2	C3	Precarico alto (chiocciola singola)						
3	C1	Precarico leggero (chiocciola singola)						
4	C4	Precarico alto (chiocciola doppia)						
5	C5	Precarico medio (chiocciola doppia)						
6	C2	Precarico medio (chiocciola singola)						
Per la correlazione delle classi di precarico vedi versioni delle chiocciole								

Panoramica versioni

Chiocciola singola flangiata FEM-E-S

Dimensioni per l'installazione Rexroth

Con guarnizioni

In parte nella versione sinistrorsa Classe di precarico: C0, C00, C1, C2, C3 Classe di tolleranza: T3²⁾, T5, T7, T9

Avviso: l'unità di lubrificazione

frontale è disponibile solo per la versione a destra.

A Durante le operazioni di set up evitare collisioni fra le unità di lubrificazione frontali e una qualsiasi altra parte della macchina.

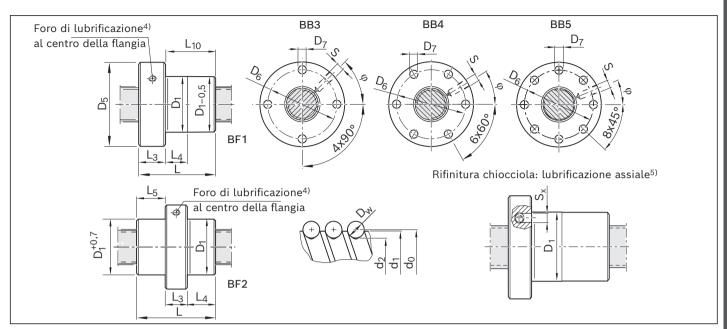
 d_0 = diametro nominale

P = passo (R = destra, L = sinistra)

D_W = diametro della sferai = numero di circuiti

Dati per l'ordinazione:

BASA	20 x 5R x 3	FEM-E-S - 4	00	1	2	T7	R	82Z120	41Z120	1250	0	1	
------	-------------	-------------	----	---	---	----	---	--------	--------	------	---	---	--


Categoria	Grandezza	Numero di	Fattori di	carico ³⁾	Velocità ¹⁾		
		identificazione	dyn. C	stat. C ₀	V _{max}		
	d ₀ x P x D _w - i		(N)	(N)	(m/min)		
Α	16 x 5R x 3 - 4	R1512 010 23	14 800	16 100	30		
Α	16 x 10R x 3 - 3	R1512 040 13	11 500	12 300	60		
A	16 x 16R x 3 - 2	R1512 060 13	7 560	7 600	96		
Α	20 x 5R x 3 - 4	R1512 110 13	17 200	21 500	30		
A	20 x 10R x 3 - 4	R1512 140 13	16 900	21 300	60		
Α	20 x 20R x 3,5 - 2	R1512 170 13	10 900	12 100	120		
Α	25 x 5R x 3 - 4	R1512 210 13	19 100	27 200	30		
Α	25 x 10R x 3 - 4	R1512 240 13	18 800	27 000	60		
Α	25 x 25R x 3,5 - 2	R1512 280 13	12 100	15 100	150		
Α	32 x 5R x 3,5 - 4	R1512 310 13	25 900	40 000	23		
Α	32 x 10R x 3,969 - 5	R1512 340 13	38 000	58 300	47		
Α	32 x 20R x 3,969 - 2	R1512 370 13	16 200	21 800	94		
Α	32 x 32R x 3,969 - 2	R1512 390 13	16 100	22 000	150		
Α	40 x 5R x 3,5 - 5	R1512 410 13	34 900	64 100	19		
Α	40 x 10R x 6 - 4	R1512 440 13	60 000	86 400	38		
Α	40 x 10R x 6 - 6	R1512 440 23	86 500	132 200	38		
Α	40 x 20R x 6 - 3	R1512 470 13	45 500	62 800	75		
Α	40 x 40R x 6 - 2	R1512 490 13	30 600	40 300	150		
Α	50 x 5R x 3,5 - 5	R1512 510 13	38 400	81 300	15		
Α	50 x 10R x 6 - 6	R1512 540 13	95 600	166 500	30		
В	50 x 16R x 6 - 6	R1512 560 13	95 300	166 000	48		
Α	50 x 20R x 6,5 - 3	R1512 570 13	57 500	87 900	60		
Α	50 x 40R x 6,5 - 2	R1512 590 13	38 500	55 800	120		
Α	63 x 10R x 6 - 6	R1512 640 13	106 600	214 300	24		
В	63 x 20R x 6,5 - 3	R1512 670 13	63 800	112 100	48		
В	63 x 40R x 6,5 - 2	R1512 690 13	44 300	74 300	95		
Α	80 x 10R x 6,5 - 6	R1512 740 13	130 100	291 700	19		
Α	80 x 20R x 12,7 - 6	R1512 770 23	315 200	534 200	30		
Versioni co	n passo sinistrorso	•					
В	16 x 5L x 3 - 4	R1552 010 03	14 800	16 100	30		
В	20 x 5L x 3 - 4	R1552 110 13	17 200	21 500	30		
В	25 x 5L x 3 - 4	R1552 210 13	19 100	27 200	30		
В	32 x 5L x 3,5 - 4	R1552 310 03	25 900	40 000	23		
В	40 x 5L x 3,5 - 5	R1552 410 03	34 900	64 100	19		
В	40 x 10L x 6 - 4	R1552 440 03	60 000	86 400	38		

¹⁾ Vedi "Fattore di velocità d0 · n" a pagina 133 e "Velocità critica ncr" a pagina 174

Classe di tolleranza T3 per grandezze secondo tabella Pagina 12

³⁾ I fattori di carico sono validi solo per le classe di tolleranza T3 e T5.

Con le altre classi di tolleranza vogliate tener conto del fattore di correzione f_{ac} a pagina 133.

- 4) Versione raccordo di lubrificazione: lamatura $L_3 \le 15$ mm, svasatura $L_3 > 15$ mm; 5) Il foro di lubrificazione assiale S_x si trova sempre sul primitivo D_6 dell'unità chiocciola.

Grandezza	(mm))															Massa
	d ₁	d ₂	D ₁	D ₅	Disposizione	D ₆	D ₇	Forma	L	L ₃	L ₄	L ₅	L ₁₀	S4)	S_x	φ	m
d ₀ x P x D _w - i			g6		dei fori			costruttiva								(°)	(kg)
16 x 5R x 3 - 4	15,0	12,9	28	53	BB3	40	6,6	BF1	38	12	10,0	-	26	M6	4	315,0	0,24
16 x 10R x 3 - 3	15,0	12,9	28	53	BB3	40	6,6	BF1	45	12	16,0	-	33	M6	4	315,0	0,25
16 x 16R x 3 - 2	15,0	12,9	33	58	BB4	45	6,6	BF2	45	15	15,0	15,0	-	M6	4	30,0	0,39
20 x 5R x 3 - 4	19,0	16,9	33	58	BB4	45	6,6	BF1	40	12	10,0	-	28	M6	4	30,0	0,28
20 x 10R x 3 - 4	19,0	16,9	33	58	BB4	45	6,6	BF1	60	12	16,0	-	48	M6	4	30,0	0,36
20 x 20R x 3,5 - 2	19,0	16,7	38	63	BB4	50	6,6	BF2	57	20	18,5	18,5	-	M6	4	30,0	0,60
25 x 5R x 3 - 4	24,0	21,9	38	63	BB4	50	6,6	BF1	45	12	10,0	-	33	M6	4	30,0	0,35
25 x 10R x 3 - 4	24,0	21,9	38			50	6,6	BF1	64	12	16,0	-	52	M6	4	30,0	0,44
25 x 25R x 3,5 - 2	24,0	21,4	48	73	BB4	60	6,6	BF2	70	25	22,5	22,5	-	M6	4	18,0	1,09
32 x 5R x 3,5 - 4	31,0	28,4	48	73	BB4	60	6,6	BF1	48	13	10,0	-	35	M6	4	30,0	0,54
32 x 10R x 3,969 - 5	31,0	27,9	48	73	BB4	60	6,6	BF1	77	13	16,0	-	64	M6	4	30,0	0,72
32 x 20R x 3,969 - 2	31,0	27,9	56	80	BB4	68	6,6	BF1	64	15	25,0	-	49	M6	4	30,0	1,02
32 x 32R x 3,969 - 2	31,0	27,9	56	80	BB4	68	6,6	BF2	88	20	34,0	34,0		M6	4	30,0	1,40
40 x 5R x 3,5 - 5	39,0	36,4	56	80	BB4	68	6,6	BF1	54	15	10,0	-	39	M8x1	5	30,0	0,71
40 x 10R x 6 - 4	38,0	33,8	63	95	BB4	78	9,0	BF1	70	15	16,0	-	55	M8x1	5	30,0	1,29
40 x 10R x 6 - 6	38,0	33,8	63		BB4	78	9,0	BF1	90	15	16,0		75	M8x1	5	30,0	1,59
40 x 20R x 6 - 3	38,0	33,8	63			78	9,0	BF1	88	15	25,0	-	73	M8x1	5	30,0	1,54
40 x 40R x 6 - 2	38,0	33,8	72	-			11,0	BF2	102	40	31,0	31,0		M8x1	5	19,0	3,59
50 x 5R x 3,5 - 5	49,0	46,4	68		BB4	82	9,0	BF1	54	15	10,0	-	39	M8x1	5	30,0	1,02
50 x 10R x 6 - 6	48,0	43,8	72	110	BB4	90	11,0	BF1	90	18	16,0	-	72	M8x1	5	30,0	2,02
50 x 16R x 6 - 6	48,0	43,8	72	110	BB4	90	11,0	BF1	128	18	25,0	-	110	M8x1	5	30,0	2,58
50 x 20R x 6,5 - 3	48,0	43,4	85	125	BB4	105	11,0	BF1	92	22	25,0	-	70	M8x1	5	30,0	3,40
50 x 40R x 6,5 - 2	48,0	43,4	85	125	BB4	105	11,0	BF1	109	22	45,0	-	87	M8x1	5	30,0	3,87
63 x 10R x 6 - 6	61,0	56,8	85	125	BB4	105	11,0	BF1	90	22	16,0	-	68	M8x1	5	30,0	2,62
63 x 20R x 6,5 - 3	61,0	56,4	95			118	14,0	BF1	92	22	25,0	-	70	M8x1	5	30,0	3,71
63 x 40R x 6,5 - 2	61,0	56,4	95	-	BB4	118	14,0	BF1	109	22	45,0	-	87	M8x1	5	30,0	4,21
80 x 10R x 6,5 - 6	78,0	73,3	105	150	BB4	125	14,0	BF1	95	22	16,0	-	73	M8x1	5	30,0	3,78
80 x 20R x 12,7 - 6	76,0	67,0	125	180	BB5	152	18,0	BF1	170	25	25,0	-	145	M8x1	5	22,5	11,00
Versioni con passo si	nistror	so															
16 x 5L x 3 - 4	15,0	12,9	28			40	6,6	BF1	38	12	10,0	-	-	M6	4	45,0	0,24
20 x 5L x 3 - 4	19,0	16,9	33			45	6,6	BF1	40	12	10,0	-	28	M6	4	30,0	0,28
25 x 5L x 3 - 4	24,0	21,9	38	63		50	6,6	BF1	45	12	10,0	-	33	M6	4	30,0	0,35
32 x 5L x 3,5 - 4	31,0	28,4	48	73	BB4	60	6,6	BF1	48	13	10,0	-	35	M6	4	30,0	0,54
40 x 5L x 3,5 - 5	39,0	36,4	56	80	BB4	68	6,6	BF1	54	15	10,0	-	39	M8x1	5	30,0	0,71
40 x 10L x 6 - 4	38,0	33,8	63	95	BB4	78	9,0	BF1	70	15	16,0	-	55	M8x1	5	30,0	1,29

Chiocciola singola flangiata FEM-E-B

Dimensioni per l'installazione analoghe a DIN 69 051, parte 5 flangia di forma B

Con guarnizioni

In parte nella versione sinistrorsa Classe di precarico: C0, C00, C1, C2, C3 Classe di tolleranza: T3²⁾, T5, T7, T9

Avviso: l'unità di lubrificazione

frontale è disponibile solo per la versione a destra.

A Durante le operazioni di set up evitare collisioni fra le unità di lubrificazione frontali e una qualsiasi altra parte della macchina.

 d_0 = diametro nominale

= passo (R = destra, L = sinistra)

D_W = diametro della sferai = numero di circuiti

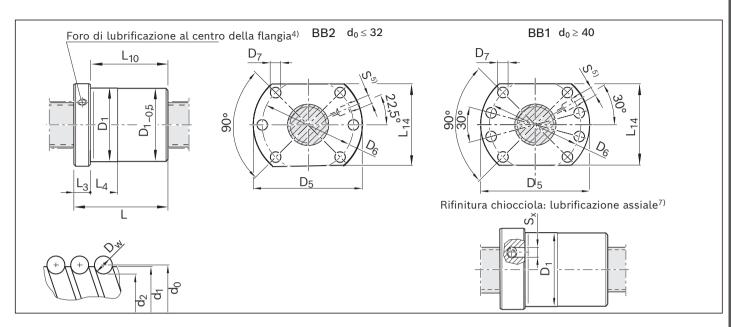
Dati per l'ordinazione:

BASA 20 x 5R x 3 | FEM-E-B - 4 | 00 | 1 | 2 | T7 | R | 82Z120 | 41Z120 | 1250 | 0 | 1

Categoria	Grandezza	Numero di	Fattori di ca	ırico ³⁾	Velocità ¹⁾
		identificazione	dyn. C	stat. C ₀	V _{max}
	d ₀ x P x D _w - i		(N)	(N)	(m/min)
Α	16 x 5R x 3 - 4	R1502 010 63	14 800	16 100	30
A	16 x 10R x 3 - 3	R1502 040 83	11 500	12 300	60
A	16 x 16R x 3 - 3	R1502 060 63	11 200	12 000	96
A	20 x 5R x 3 - 4	R1502 110 83	17 200	21 500	30
A	20 x 10R x 3 - 4	R1502 140 63	16 900	21 300	60
Α	20 x 20R x 3,5 - 3	R1502 170 63	16 000	18 800	120
A	25 x 5R x 3 - 4	R1502 210 83	19 100	27 200	30
A	25 x 10R x 3 - 4	R1502 240 83	18 800	27 000	60
A	25 x 25R x 3,5 - 3	R1502 280 63	17 600	23 300	150
A	32 x 5R x 3,5 - 4	R1502 310 83	25 900	40 000	23
Α	32 x 10R x 3,969 - 5	R1502 340 84	38 000	58 300	47
Α	32 x 20R x 3,969 - 3	R1502 370 63	23 600	33 700	94
A	32 x 32R x 3,969 - 3	R1502 390 63	23 400	34 000	150
A	40 x 5R x 3,5 - 5	R1502 410 84	34 900	64 100	19
A	40 x 10R x 6 - 4	R1502 440 83	60 000	86 400	38
Α	40 x 10R x 6 - 6	R1502 440 84	86 500	132 200	38
A	40 x 12R x 6 - 4	R1502 450 63	59 900	86 200	45
A	40 x 16R x 6 - 4	R1502 460 63	59 600	85 900	60
Α	40 x 20R x 6 - 3	R1502 470 83	45 500	62 800	75
В	40 x 25R x 6 - 4	R1502 480 84	56 900	85 800	93
В	40 x 30R x 6 - 4	R1502 4A0 84	56 300	85 100	112
A	40 x 40R x 6 - 3	R1502 490 63	44 400	62 300	150
Α	50 x 5R x 3,5 - 5	R1502 510 84	38 400	81 300	15
A	50 x 10R x 6 - 6	R1502 540 84	95 600	166 500	30
Α	50 x 12R x 6 - 6	R1502 550 64	95 500	166 400	36
Α	50 x 16R x 6 - 6	R1502 560 64	95 300	166 000	48
Α	50 x 20R x 6,5 - 5	R1502 570 84	90 800	149 700	60
В	50 x 25R x 6,5 - 4	R1502 580 84	71 800	149 700	75
В	50 x 30R x 6,5 - 4	R1502 5A0 83	71 300	118 800	90
Α	50 x 40R x 6,5 - 3	R1502 590 63	55 800	85 900	120
Α	63 x 10R x 6 - 6	R1502 640 84	106 600	214 300	24
Α	63 x 20R x 6,5 - 5	R1502 670 84	100 700	190 300	48
Α	63 x 40R x 6,5 - 3	R1502 690 63	64 100	114 100	95
Α	80 x 10R x 6,5 - 6	R1502 740 84	130 100	291 700	19
Α	80 x 20R x 12,7 - 6	R1502 770 94	315 200	534 200	30
В	80 x 40R x 12,7 - 4	R1502 790 94	216 600	367 600	60
Versioni co	n passo sinistrorso				
В	16 x 5L x 3 - 4	R1552 010 63	14 800	16 100	30
Α	20 x 5L x 3 - 4	R1552 110 83	17 200	21 500	30
В	25 x 5L x 3 - 4	R1552 210 83	19 100	27 200	30
В	32 x 5L x 3,5 - 4	R1552 310 63	25 900	40 000	23
В	40 x 5L x 3,5 - 5	R1552 410 64	34 900	64 100	19
В	40 x 10L x 6 - 4	R1552 440 63	60 000	86 400	38

¹⁾ Vedi "Fattore di velocità d0 · n" a pagina 133 e "Velocità critica ncr" a pagina 174

²⁾ Classe di tolleranza T3 per grandezze secondo tabella Pagina 12


³⁾ I fattori di carico sono validi solo per le classe di tolleranza T3 e T5.

Con le altre classi di tolleranza vogliate tener conto del fattore di correzione f_{ac} a pagina 133.

⁴⁾ Versione raccordo di lubrificazione: lamatura $L_3 \le 15$ mm, svasatura $L_3 > 15$ mm;

⁵⁾ Posizione del foro di lubrificazione con passo sinistrorso speculare rispetto al passo destrorso!

⁶⁾ Il foro di lubrificazione assiale S_x si trova sempre sul primitivo D_6 dell'unità chiocciola.

Grandezza	(mm)														Massa
	d ₁	d ₂	D_1	D_5	Disposizione	D ₆	D_7	L	L ₃	L ₄	L ₁₀	L ₁₄	S ⁴⁾	S_x	r
d ₀ x P x D _w - i			g6		dei fori										(kg
16 x 5R x 3 - 4	15	12,9	28	48	BB2	38	5,5	38	12	10	26	40,0	M6	4	0,1
16 x 10R x 3 - 3	15	12,9	28	48	BB2	38	5,5	45	12	16	33	40,0	M6	4	0,2
16 x 16R x 3 - 3	15	12,9	28	48	BB2	38	5,5	61	12	20	49	40,0	M6	4	0,2
20 x 5R x 3 - 4	19	16,9	36	58	BB2	47	6,6	40	12	10	28	44,0	M6	4	0,3
20 x 10R x 3 - 4	19	16,9	36	58	BB2	47	6,6	60	12	16	48	44,0	M6	4	0,4
20 x 20R x 3,5 - 3	19	16,7	36	58	BB2	47	6,6	77	12	25	65	44,0	M6	4	0,4
25 x 5R x 3 - 4	24	21,9	40	62	BB2	51	6,6	45	12	10	33	48,0	M6	4	0,3
25 x 10R x 3 - 4	24	21,9	40	62	BB2	51	6,6	64	12	16	52	48,0	M6	4	0,4
25 x 25R x 3,5 - 3	24	21,4	40	62	BB2	51	6,6	95	12	30	83	48,0	M6	4	0,6
32 x 5R x 3,5 - 4	31	28,4	50	80	BB2	65	9,0	48	13	10	35	62,0	M6	4	0,6
32 x 10R x 3,969 - 5	31	27,9	50	80	BB2	65	9,0	77	13	16	64	62,0	M6	4	0,8
32 x 20R x 3,969 - 3	31	27,9	50	80	BB2	65	9,0	84	13	25	71	62,0	M6	4	0,9
32 x 32R x 3,969 - 3	31	27,9	50	80	BB2	65	9,0	120	13	40	107	62,0	M6	5	1,2
40 x 5R x 3,5 - 5	39	36,4	63	93	BB1	78	9,0	54	15	10	39	70,0	M8x1	5	1,0
40 x 10R x 6 - 4	38	33,8	63	93	BB1	78	9,0	70	15	16	55	70,0	M8x1	5	1,1
40 x 10R x 6 - 6	38	33,8	63	93	BB1	78	9,0	90	15	16	75	70,0	M8x1	5	1,4
40 x 12R x 6 - 4	38	33,8	63	93	BB1	78	9,0	75	15	25	60	70,0	M8x1	5	1,2
40 x 16R x 6 - 4	38	33,8	63	93	BB1	78	9,0	90	15	25	75	70,0	M8x1	5	1,5
40 x 20R x 6 - 3	38	33.8	63	93	BB1	78	9.0	88	15	25	73	70,0	M8x1	5	1,4
40 x 25R x 6 - 4	38	33,8	63	93	BB1	78	9,0	127	15	30	112	70,0	M8x1	5	1,9
40 x 30R x 6 - 4	38	33,8	63	93	BB1	78	9,0	145	15	35	130	70,0	M8x1	5	2,2
40 x 40R x 6 - 3	38	33,8	63	93	BB1	78	9,0	142	15	45	127	70,0	M8x1	5	2,1
50 x 5R x 3,5 - 5	49	46,4	75	110	BB1	93	11,0	54	15	10	39	85,0	M8x1	5	1,3
50 x 10R x 6 - 6	48	43,8	75	110	BB1	93	11,0	90	18	16	72	85,0	M8x1	5	2,14
50 x 12R x 6 - 6	48	43,8	75		BB1	93	11,0	105	18	25	87	85.0		5	2,3
50 x 16R x 6 - 6	48	43,8	75	110	BB1	93	11,0	128	18	25	110	85,0	M8x1	5	2,7
50 x 20R x 6,5 - 5	48	43,4	75	110	BB1	93	11,0	132	18	25	114	85,0	M8x1	5	2,7
50 x 25R x 6,5 - 4	48	43,4	75	110	BB1	93	11,0	132	18	25	114	85,0	M8x1	_	2,78
50 x 30R x 6,5 - 4	48	43,4	75	110	BB1	93	11,0	151	18	35	133	85,0	M8x1	5	3,1
50 x 40R x 6,5 - 3	48	43,4	75	110	BB1	93	11,0	149	18	45	131	85,0		5	3,04
63 x 10R x 6 - 6	61	56.8	90	125	BB1	108	11.0	90	22	16	68	95.0		5	2,50
63 x 20R x 6,5 - 5	61	56,4	95	135	BB1	115	13,5	132	22	25	110	100,0	M8x1	5	4,5
63 x 40R x 6,5 - 3	61	56,4	95	135	BB1	115	13,5	149	22	45	127	100,0		5	5,0
80 x 10R x 6,5 - 6	78	73,3	105	145	BB1	125	13,5	95	22	16	73	110.0		5	3,4
80 x 20R x 12,7 - 6	76	67.0	125	165	BB1	145	13,5	170	25	25	145	130,0		5	10,2
80 x 40R x 12,7 - 4	76	67,0	125	165	BB1	145	13,5	206	25	25	181		M8x1	5	11,6
Versioni con passo sir		0.,0	.20				. 0,0	200	20	20		.00,0	1110711	Ŭ	,
16 x 5L x 3 - 4	15	12,9	28	48	BB2	38	5.5	38	12	10	26	40.0	M6	4	0,1
20 x 5L x 3 - 4	19	16,9	36	58	BB2	47	6.6	40	12	10	28	44.0		4	0,3
25 x 5L x 3 - 4	24	21,9	40	62	BB2	51	6,6	45	12	10	33	48,0	_	4	0,3
32 x 5L x 3,5 - 4	31	28.4	50	80	BB2	65	9.0	48	13	10	35	62,0		4	0,6
40 x 5L x 3,5 - 5	39	36,4	63		BB1	78	9.0	54	15	10	39	70,0		5	1,0
40 x 10L x 6 - 4	38	33.8	63		BB1	78	9.0	70	15	16	55		M8x1	5	1,19

Chiocciola singola con precarico registrabile SEM-E-S

Dimensioni per l'installazione Rexroth

Con guarnizioni In parte nella versione sinistrorsa Precarico registrabile Classe di tolleranza T3², T5, T7

Avviso: l'unità di lubrificazione

frontale è disponibile solo per la versione a destra.

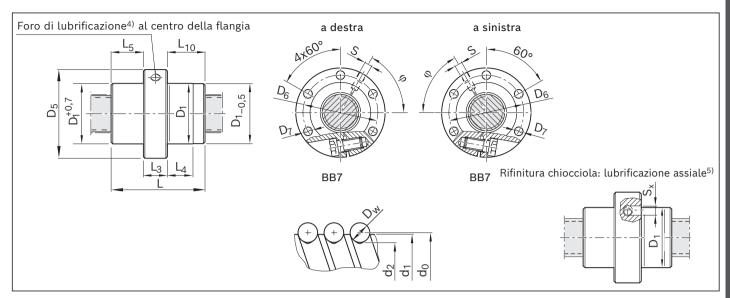
A Durante le operazioni di set up evitare collisioni fra le unità di lubrificazione frontali e una qualsiasi altra parte della macchina.

 d_0 = diametro nominale

P = passo (R = destra, L = sinistra)

D_W = diametro della sfera i = numero di circuiti

Indicazioni per l'ordine:


BASA 20 x 5R x 3 | SEM-E-S - 4 | 00 | 1 | 2 | T7 | R | 82Z120 | 41Z120 | 1250 | 0 | 1

Categoria	Grandezza	Numero di	Fattori di car	rico ³⁾	Velocità ¹⁾	Diametro di cen	traggio D₁
Categoria	Grandczza	identificazione	dyn. C	stat. C ₀	V _{max}	secondo la regis	
	d ₀ x P x D _w - i	lacitimeazione	(N)	(N)	(m/min)	min. (mm)	max. (mm)
Α	16 x 5R x 3 - 4	R1512 010 24	14 800	16 100	30	27,940	27,975
В	16 x 10R x 3 - 3	R1512 040 14	11 500	12 300	60	27,940	27,975
В	16 x 16R x 3 - 2	R1512 060 14	7 560	7 600	96	32,945	32,973
A	20 x 5R x 3 - 4	R1512 110 14	17 200	21 500	30	32,935	32,970
A	20 x 20R x 3,5 - 2	R1512 170 14	10 900	12 100	120	37,945	37,973
A	25 x 5R x 3 - 4	R1512 210 14	19 100	27 200	30	37,935	37,970
A	25 x 10R x 3 - 4	R1512 240 14	18 800	27 000	60	37,935	37,970
Α	25 x 25R x 3,5 - 2	R1512 280 14	12 100	15 100	150	47,945	47,973
Α	32 x 5R x 3,5 - 4	R1512 310 14	25 900	40 000	23	47,935	47,970
Α	32 x 10R x 3,969 - 5	R1512 340 14	38 000	58 300	47	47,935	47,970
Α	32 x 20R x 3,969 - 2	R1512 370 14	16 200	21 800	94	55,941	55,969
Α	32 x 32R x 3,969 - 2	R1512 390 14	16 100	22 000	150	55,941	55,969
Α	40 x 5R x 3,5 - 5	R1512 410 14	34 900	64 100	19	55,931	55,966
Α	40 x 10R x 6 - 4	R1512 440 14	60 000	86 400	38	62,931	62,966
A	40 x 20R x 6 - 3	R1512 470 14	45 500	62 800	75	62,941	62,969
Α	40 x 40R x 6 - 2	R1512 490 14	30 600	40 300	150	71,941	71,969
В	50 x 5R x 3,5 - 5	R1512 510 14	38 400	81 300	15	67,931	67,966
B A B B A	50 x 10R x 6 - 6	R1512 540 14	95 600	166 500	30	71,931	71,966
В	50 x 20R x 6,5 - 3	R1512 570 14	57 500	87 900	60	84,936	84,964
В	50 x 40R x 6,5 - 2	R1512 590 14	38 500	55 800	120	84,936	84,964
Α	63 x 10R x 6 - 6	R1512 640 14	106 600	214 300	24	84,926	84,961
	63 x 20R x 6,5 - 3	R1512 670 14	63 800	112 100	48	94,936	94,964
B B	63 x 40R x 6,5 - 2	R1512 690 14	44 300	74 300	95	94,936	94,964
В	80 x 10R x 6,5 - 6	R1512 740 14	130 100	291 700	19	104,926	104,961
В	80 x 20R x 12,7 - 6	R1512 770 24	315 200	534 200	30	124,931	124,959
Versioni co	n passo sinistrorso						
В	16 x 5L x 3 - 4	R1552 010 04	14 800	16 100	30	27,94	27,975
В	20 x 5L x 3 - 4	R1552 110 14	17 200	21 500	30	32,935	32,970
В	25 x 5L x 3 - 4	R1552 210 14	19 100	27 200	30	37,935	37,970
Α	32 x 5L x 3,5 - 4	R1552 310 04	25 900	40 000	23	47,935	47,970
В	40 x 5L x 3,5 - 5	R1552 410 04	34 900	64 100	19	55,931	55,966
Α	40 x 10L x 6 - 4	R1552 440 04	60 000	86 400	38	62,931	62,966

¹⁾ Vedi "Fattore di velocità d0 · n" a pagina 133 e "Velocità critica ncr" a pagina 174

²⁾ Classe di tolleranza T3 per grandezze secondo tabella Pagina 12

³⁾ I fattori di carico sono validi solamente per la classe di tolleranza T3 e T5. Con le altre classi di tolleranza vogliate tener conto del fattore di correzione f_{ac} a pagina 133.

- 4) Versione raccordo di lubrificazione: lamatura L₃ ≤ 15 mm, svasatura L₃ > 15 mm; per grandezza 8 x 2,5 è compreso nella fornitura un nipplo a imbuto DIN 3405.
- 5) Il foro di lubrificazione assiale S_x si trova sempre sul primitivo D_6 dell'unità chiocciola.

Grandezza	(mm)															Massa
	d ₁	d ₂	D ₁	D_5	Disposizione	D ₆	D ₇	L	L ₃	L ₄	L ₅	L ₁₀	S4)	S_x	φ	m
d ₀ x P x D _w - i			f9		dei fori										(°)	(kg)
16 x 5R x 3 - 4	15,0	12,9	28	53	BB7	40	6,6	38	15	10,0	11,5	11,5	M6	4	53	0,24
16 x 10R x 3 - 3	15,0	12,9	28	53	BB7	40	6,6	45	15	15,0	15,0	15,0	M6	4	180	0,25
16 x 16R x 3 - 2	15,0	12,9	33	58	BB7	45	6,6	45	15	15,0	15,0	15,0	M6	4	50	0,42
20 x 5R x 3 - 4	19,0	16,9	33	58	BB7	45	6,6	40	15	10,0	12,5	12,5	M6	4	56	0,31
20 x 20R x 3,5 - 2	19,0	16,7	38	63	BB7	50	6,6	57	20	18,5	18,5	18,5	M6	4	60	0,63
25 x 5R x 3 - 4	24,0	21,9	38	63	BB7	50	6,6	45	20	10,0	12,5	12,5	M6	4	60	0,44
25 x 10R x 3 - 4	24,0	21,9	38	63	BB7	50	6,6	64	20	16,0	22,0	22,0	M6	4	60	0,53
25 x 25R x 3,5 - 2	24,0	21,4	48	73	BB7	60	6,6	70	25	22,5	22,5	22,5	M6	4	48	1,13
32 x 5R x 3,5 - 4	31,0	28,4	48	73	BB7	60	6,6	48	20	10,0	14,0	14,0	M6	4	60	0,64
32 x 10R x 3,969 - 5	31,0	27,9	48	73	BB7	60	6,6	77	20	16,0	28,5	28,5	M6	4	168	0,87
32 x 20R x 3,969 - 2	31,0	27,9	56	80	BB7	68	6,6	64	20	22,0	22,0	22,0	M6	4	60	1,14
32 x 32R x 3,969 - 2	31,0	27,9	56	80	BB7	68	6,6	88	20	34,0	34,0	34,0	M6	4	60	1,44
40 x 5R x 3,5 - 5	39,0	36,4	56	80	BB7	68	6,6	54	20	10,0	17,0	17,0	M8x1	5	65	0,87
40 x 10R x 6 - 4	38,0	33,8	63	95	BB7	78	9,0	70	25	16,0	22,5	22,5	M8x1	5	57	1,53
40 x 20R x 6 - 3	38,0	33,8	63	95	BB7	78	9,0	88	25	25,0	31,5	31,5	M8x1	5	180	1,77
40 x 40R x 6 - 2	38,0	33,8	72	110	BB7	90	11,0	102	40	31,0	31,0	31,0	M8x1	5	49	3,77
50 x 5R x 3,5 - 5	49,0	46,4	68	98	BB7	82	9,0	54	25	10,0	14,5	14,5	M8x1	5	67	1,23
50 x 10R x 6 - 6	48,0	43,8	72	110	BB7	90	11,0	90	30	16,0	30,0	30,0	M8x1	5	61	2,44
50 x 20R x 6,5 - 3	48,0	43,3	85	125	BB7	105	11,0	92	30	25,0	31,0	31,0	M8x1	5	180	3,94
50 x 40R x 6,5 - 2	48,0	43,3	85	125	BB7	105	11,0	109	30	39,5	39,5	39,5	M8x1	5	60	4,42
63 x 10R x 6 - 6	61,0	56,8	85	125	BB7	105	11,0	90	30	16,0	30,0	30,0	M8x1	5	65	2,94
63 x 20R x 6,5 - 3	61,0	56,3	95	140	BB7	118	14,0	92	30	25,0	31,0	31,0	M8x1	5	190	4,45
63 x 40R x 6,5 - 2	61,0	56,3	95	140	BB7	118	14,0	109	30	39,5	39,5	39,5	M8x1	5	70	4,95
80 x 10R x 6,5 - 6	78,0	73,3	105	150	BB7	125	14,0	95	30	16,0	32,5	32,5	M8x1	5	67	4,20
80 x 20R x 12,7 - 6	76,0	67,0	125	180	BB7	152	18,0	170	50	25,0	60,0	60,0	M8x1	5	60	13,3
Versioni con passo s	inistrors	50														
16 x 5L x 3 - 4	15,0	12,9	28	53	BB7	40	6,6	38	15	10,0	11,5	11,5	M6	4	53	0,24
20 x 5L x 3 - 4	19,0	16,9	33	58	BB7	45	6,6	40	15	10,0	12,5	12,5	M6	4	56	0,31
25 x 5L x 3 - 4	24,0	21,9	38	63	BB7	50	6,6	45	20	10,0	12,5	12,5	M6	4	60	0,44
32 x 5L x 3,5 - 4	31,0	28,4	48	73	BB7	60	6,6	48	20	10,0	14,0	14,0	M6	4	59	0,64
40 x 5L x 3,5 - 5	39,0	36,4	56	80	BB7	68	6,6	54	20	10,0	17,0	17,0	M8x1	5	65	0,87
40 x 10L x 6 - 4	38,0	33,8	63	95	BB7	78	9,0	70	25	16,0	22,5	22,5	M8x1	5	57	1,53

Chiocciola singola con precarico registrabile SEM-E-C

Dimensioni per l'installazione analoghe a DIN 69 051, parte 5 flangia di forma C

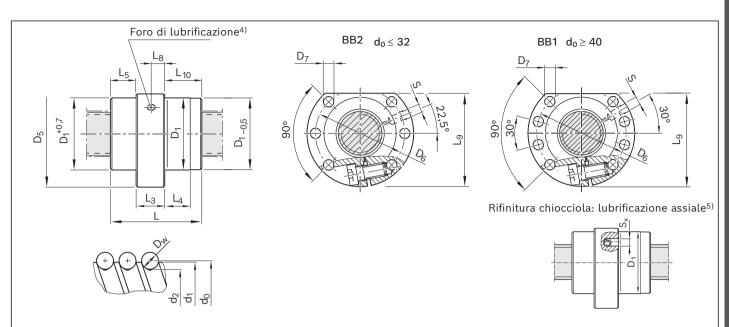
Con guarnizioni Precarico registrabile Classe di tolleranza T3², T5, T7

A Durante le operazioni di set up evitare collisioni fra le unità di lubrificazione frontali.

 d_0 = diametro nominale

P = passo (R = filettatura destrorsa)

D_W = diametro della sfera i = numero di circuiti


Indicazioni per l'ordine:

Categoria	Grandezza	Numero di	Fattori di ca	rico ³⁾	Velocità ¹⁾	Diametro di centra	ggio D ₁ secondo
		identificazione	dyn. C	stat. C ₀	V _{max}	la registrazione	
	d ₀ x P x D _w - i		(N)	(N)	(m/min)	min. (mm)	max. (mm)
Α	16 x 5R x 3 - 4	R1512 010 55	14 800	16 100	30	27,940	27,975
В	16 x 10R x 3 - 3	R1512 040 75	11 500	12 300	60	27,940	27,975
В	16 x 16R x 3 - 3	R1512 060 55	11 200	12 000	96	27,950	27,978
Α	20 x 5R x 3 - 4	R1512 110 75	17 200	21 500	30	35,935	35,970
Α	20 x 20R x 3,5 - 3	R1512 170 55	16 000	18 800	120	35,945	35,973
Α	25 x 5R x 3 - 4	R1512 210 75	19 100	27 200	30	39,935	39,970
Α	25 x 10R x 3 - 4	R1512 240 75	18 800	27 000	60	39,935	39,970
В	25 x 25R x 3,5 - 3	R1512 280 55	17 600	23 300	150	39,945	39,973
Α	32 x 5R x 3,5 - 4	R1512 310 75	25 900	40 000	23	49,935	49,970
Α	32 x 10R x 3,969 - 5	R1512 340 75	38 000	58 300	47	49,935	49,970
Α	32 x 20R x 3,969 - 3	R1512 370 55	23 600	33 700	94	49,945	49,973
В	32 x 32R x 3,969 - 3	R1512 390 55	23 400	34 000	150	49,945	49,973
Α	40 x 5R x 3,5 - 5	R1512 410 75	34 900	64 100	19	62,931	62,966
В	40 x 10R x 6 - 4	R1512 440 75	60 000	86 400	38	62,931	62,966
В	40 x 12R x 6 - 4	R1512 450 55	59 900	86 200	45	62,931	62,966
В	40 x 20R x 6 - 3	R1512 470 75	45 500	62 800	75	62,941	62,969
В	40 x 40R x 6 - 3	R1512 490 55	44 400	62 300	150	62,941	62,969
В	50 x 5R x 3,5 - 5	R1512 510 75	38 400	81 300	15	74,931	74,966
В	50 x 10R x 6 - 6	R1512 540 75	95 600	166 500	30	74,931	74,966
В	50 x 12R x 6 - 6	R1512 550 55	95 500	166 400	36	74,931	74,966
Α	50 x 20R x 6,5 - 5	R1512 570 76	90 800	149 700	60	74,941	74,969
В	50 x 40R x 6,5 - 3	R1512 590 55	55 800	85 900	120	74,941	74,969
В	63 x 10R x 6 - 6	R1512 640 75	106 600	214 300	24	89,926	89,961
В	63 x 20R x 6,5 - 5	R1512 670 76	100 700	190 300	48	94,936	94,964
В	63 x 40R x 6,5 - 3	R1512 690 55	64 100	114 100	95	94,936	94,964
В	80 x 10R x 6,5 - 6	R1512 740 75	130 100	291 700	19	104,926	104,961
В	80 x 20R x 12,7 - 6	R1512 770 56	315 200	534 200	30	124,931	124,959

¹⁾ Vedi "Fattore di velocità d
0 \cdot n" a pagina 133 e "Velocità critica ncr" a pagina 174

²⁾ Classe di tolleranza T3 per grandezze secondo tabella Pagina 12

I fattori di carico sono validi solo per le classe di tolleranza T3 e T5.
 Con le altre classi di tolleranza vogliate tener conto del fattore di correzione f_{ac} a pagina 133.

- 4) Versione raccordo di lubrificazione: lamatura $L_3 \le 15$ mm, svasatura $L_3 > 15$ mm 5) Il foro di lubrificazione assiale S_x si trova sempre sul primitivo D_6 dell'unità chiocciola.

Grandezza	(mm)																Massa
	d ₁	d ₂	D ₁	D_5	Disposizione	D ₆	D ₇	L	L ₃	L ₄	L ₅	L ₈	L ₉	L ₁₀	S ⁴⁾	S _x	m
d ₀ x P x D _w - i			f9		dei fori												(kg)
16 x 5R x 3 - 4	15,0	12,9	28	48	BB2	38	5,5	38	15	10	11,5	7,1	44,0	11,5		4	0,20
16 x 10R x 3 - 3	15,0	12,9	28	48		38	5,5	45	15	15	15,0	11,0	44,0	15,0		4	0,22
16 x 16R x 3 - 3	15,0	12,9	28	48	BB2	38	5,5	61	15	20	23,0	10,0	44,0	23,0	M6	4	0,29
20 x 5R x 3 - 4	19,0	16,9	36	58	BB2	47	6,6	40	15	10	12,5	7,1	51,0	12,5	M6	4	0,33
20 x 20R x 3,5 - 3	19,0	16,7	36	58	BB2	47	6,6	77	20	25	28,5	12,5	51,0	28,5	M6	4	0,56
25 x 5R x 3 - 4	24,0	21,9	40	62		51	6,6	45	20	10	12,5	9,5	55,0	12,5	M6	4	0,43
25 x 10R x 3 - 4	24,0	21,9	40	62	BB2	51	6,6	64	20	16	22,0	10,0	55,0	22,0	M6	4	0,54
25 x 25R x 3,5 - 3	24,0	21,4	40	62	BB2	51	6,6	95	25	30	35,0	14,0	55,0	35,0	M6	4	0,77
32 x 5R x 3,5 - 4	31,0	28,4	50	80	BB2	65	9,0	48	20	10	14,0	9,7	71,0	14,0	M6	4	0,74
32 x 10R x 3,969 - 5	31,0	27,9	50	80	BB2	65	9,0	77	20	16	28,5	12,5	71,0	28,5	M6	4	0,97
32 x 20R x 3,969 - 3	31,0	27,9	50	80	BB2	65	9,0	84	20	25	32,0	12,5	71,0	32,0	M6	4	1,04
32 x 32R x 3,969 - 3	31,0	27,9	50	80		65	9,0	120	20	40	50,0	12,5	71,0	50,0	M6	4	1,34
40 x 5R x 3,5 - 5	39,0	36,4	63	93		78	9,0	54	25	10	14,5	12,0	81,5	14,5	M8x1	5	1,25
40 x 10R x 6 - 4	38,0	33,8	63	93		78	9,0	70	25	16	22,5	11,8	81,5	22,5		5	1,39
40 x 12R x 6 - 4	38,0	33,8	63	93	BB1	78	9,0	75	25	25	25,0	12,5	81,5	25,0	M8x1	5	1,47
40 x 20R x 6 - 3	38,0	33,8	63	93		78	9,0	88	25	25	31,5	16,5	81,5	31,5		5	1,55
40 x 40R x 6 - 3	38,0	33,8	63	93	BB1	78	9,0	142	40	45	51,0	25,0	81,5	51,0	M8x1	5	2,69
50 x 5R x 3,5 - 5	49,0	46,4	75	110	BB1	93	11,0	54	25	10	14,5	12,0	97,5	14,5	M8x1	5	1,67
50 x 10R x 6 - 6	48,0	43,8	75	110		93	11,0	90	30	16	30,0	14,1	97,5	30,0		5	2,46
50 x 12R x 6 - 6	48,0	43,8	75	110	BB1	93	11,0	105	30	25	37,5	15,0	97,5	37,5		5	2,69
50 x 20R x 6,5 - 5	48,0	43,4	75	110	BB1	93	11,0	132	30	25	51,0	20,0	97,5	51,0		5	3,08
50 x 40R x 6,5 - 3	48,0	43,4	75	110	BB1	93	11,0	149	30	45	59,5	18,0	97,5	59,5		5	3,39
63 x 10R x 6 - 6	61,0	56,8	90	125	BB1	108	11,0	90	30	16	30,0	- 1	110,0	30,0	M8x1	5	2,83
63 x 20R x 6,5 - 5	61,0	56,4	95	135	BB1	115	13,5	132	30	25	51,0	- 1	117,5	51,0		5	4,86
63 x 40R x 6,5 - 3	61,0	56,4	95	135	BB1	115	13,5	149	30	45	59,5	- 1	117,5	59,5		5	5,36
80 x 10R x 6,5 - 6	78,0	73,3	105	145		125	13,5	95	30	16	32,5		127,5	32,5		5	3,73
80 x 20R x 12,7 - 6	76,0	67,0	125	165	BB1	145	13,5	170	50	25	60,0	24,0	147,5	60,0	M8x1	5	13,50

Chiocciola singola cilindrica ZEM-E-S / ZEM-E-K¹// ZEM-E-A²⁾

Dimensioni per l'installazione Rexroth

Con guarnizioni In parte nella versione sinistrorsa Classe di precarico: C0, C00, C1, C2, C3 Classe di tolleranza T3⁴⁾, T5, T7, T9

0 = diametro nominale

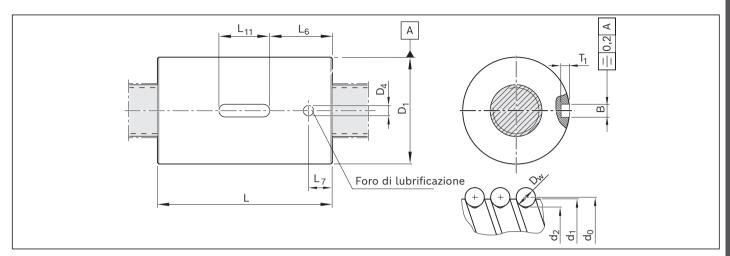
P = passo (R = destra, L = sinistra)

D_W = diametro della sfera i = numero di circuiti

Indicazioni per l'ordine:

	BASA	20 x 5R x 3	ZEM-E-S - 5	00	1	2	T7	R	82Z120	41Z120	1250	0	1	
--	------	-------------	-------------	----	---	---	----	---	--------	--------	------	---	---	--

Categoria	Grandezza	Numero di	Fattori di carico ⁵⁾		Velocità ³⁾
	d ₀ x P x D _w - i	identificazione	dyn. C	stat. Co	V _{max}
			(N)	(N)	(m/min)
Α	16 x 5R x 3 - 4	R1512 010 22	14 800	16 100	30
A	16 x 5R x 3 - 4	R1512 010 22	14 800	16 100	30
A	16 x 10R x 3 - 3	R1512 040 12	11 500	12 300	60
A	16 x 10R x 3 - 3	R1512 042 08 ¹⁾	11 500	12 300	60
A	16 x 10R x 3 - 3	R1512 042 09 ¹⁾	11 500	12 300	60
A	16 x 16R x 3 - 2	R1512 060 12	7 560	7 600	96
A	16 x 16R x 3 - 2	R1512 062 10 ¹⁾	7 560	7 600	96
A	16 x 16R x 3 - 3	R1512 060 52	11 200	12 300	96
В	16 x 16R x 3 - 3	R1512 062 11 ¹⁾	11 200	12 300	96
В	20 x 5R x 3 - 4	R1512 112 43 ¹⁾	17 200	21 500	30
A	20 x 5R x 3 - 5	R1512 110 12	21 000	27 300	30
A	20 x 10R x 3 - 4	R1512 140 12	16 900	21 300	60
В	20 x 10R x 3 - 4	R1512 142 04 ¹⁾	16 900	21 300	60
A	20 x 20R x 3,5 - 2	R1512 170 12	10 900	12 100	120
В	20 x 20R x 3,5 - 3	R1512 170 52	16 000	18 800	120
Α	20 x 20R x 3,5 - 3	R1512 172 07 ¹⁾	16 000	18 800	120
A	25 x 5R x 3 - 4	R1512 210 12	19 100	27 200	30
Α	25 x 10R x 3 - 4	R1512 240 12	18 800	27 000	60
A	25 x 25R x 3,5 - 2	R1512 280 12	12 100	15 100	150
A	25 x 25R x 3,5 - 3	R1512 280 52	17 600	23 300	150
A	32 x 5R x 3,5 - 4	R1512 310 12	25 900	40 000	23
A	32 x 5R x 3,5 - 4	R1512 310 52 ²⁾	25 900	40 000	23
Α	32 x 10R x 3,969 - 5	R1512 340 12	38 000	58 300	47
Α	32 x 10R x 3,969 - 5	R1512 340 52 ²⁾	38 000	58 300	47
В	32 x 20R x 3,969 - 2	R1512 370 12	16 200	21 800	94
_A	32 x 20R x 3,969 - 3	R1512 370 52	23 600	33 700	94
_B	32 x 32R x 3,969 - 2	R1512 390 12	16 100	22 000	150
Α	32 x 32R x 3,969 - 3	R1512 390 52	23 400	34 000	150
Α	40 x 5R x 3,5 - 5	R1512 410 12	34 900	64 100	19
В	40 x 5R x 3,5 - 5	R1512 412 21 ¹⁾	34 900	64 100	19
Α	40 x 10R x 6 - 4	R1512 440 12	60 000	86 400	38
В	40 x 10R x 6 - 6	R1512 440 22	86 500	132 200	38
Α	40 x 20R x 6 - 3	R1512 470 12	45 500	62 800	75
_A	40 x 40R x 6 - 2	R1512 490 12	30 600	40 300	150
_A	40 x 40R x 6 - 3	R1512 490 52	44 400	62 300	150
В	50 x 5R x 3,5 - 5	R1512 510 12	38 400	81 300	15
_A	50 x 10R x 6 - 6	R1512 540 12	95 600	166 500	30
<u>B</u>	50 x 20R x 6,5 - 3	R1512 570 12	57 500	87 900	60
_B	63 x 10R x 6 - 6	R1512 640 12	106 600	214 300	24
В	80 x 10R x 6,5 - 6	R1512 740 12	130 100	291 700	19
	n passo sinistrorso	I = . = = =			
<u>A</u>	16 x 5L x 3 - 4	R1552 010 02	14 800	16 100	30
<u>B</u>	20 x 5L x 3 - 5	R1552 110 12	21 000	27 300	30
<u>B</u>	20 x 5L x 3 - 4	R1552 112 04 ¹⁾	17 200	21 500	30
<u>B</u>	25 x 5L x 3 - 4	R1552 210 12	19 100	27 200	30
<u>B</u>	32 x 5L x 3,5 - 4	R1552 310 02	25 900	40 000	23
<u>B</u>	40 x 5L x 3,5 - 5	R1552 410 02	34 900	64 100	19
В	40 x 10L x 6 - 4	R1552 440 02	60 000	86 400	38


¹⁾ ZEM-E-K / chiocciole per moduli Rexroth e unità di azionamento

²⁾ ZEM-E-A / chiocciole con dimensioni per l'installazione secondo DIN 69051, parte 5

³⁾ Vedi "Fattore di velocità d0 · n" a pagina 133 e "Velocità critica ncr" a pagina 174

⁴⁾ Classe di tolleranza T3 per grandezze secondo tabella Pagina 12

⁵⁾ I fattori di carico sono validi solo per le classe di tolleranza T3 e T5. Con le altre classi di tolleranza vogliate tener conto del fattore di correzione f_{ac} a pagina 133.

Grandezza	(mm)										Massa
d ₀ x P x D _w - i	d ₁	d ₂	D_1	D ₄	L	L ₆	L ₇	L ₁₁	В	T ₁	m
		42	g6	- 4	±0.1	-6	-/	+0,2	P9	+0.1	(kg)
16 v ED :: 2 4	15.0	10.0	-			445	0.5	,	-	.,	_
16 x 5R x 3 - 4	15,0	12,9	28	4	35	14,5	9,5	12	5	3,0	0,09
16 x 5R x 3 - 4	15,0	12,9	33	2	45	14,5	9,5	16	5	3,0	0,17
16 x 10R x 3 - 3	15,0	12,9	28	4	45	14,5	9,5	16	5	3,0	0,12
16 x 10R x 3 - 3	15,0	12,9	38	4	54	19,0	9,5	16	5	3,0	0,35
16 x 10R x 3 - 3	15,0	12,9	33	4	45	14,5	9,5	16	5	3,0	0,20
16 x 16R x 3 - 2	15,0	12,9	33	4	45	14,5	9,5	16	5	3,0	0,20
16 x 16R x 3 - 2	15,0	12,9	28	4	45	14,5	9,5	16	5	3,0	0,12
16 x 16R x 3 - 3	15,0	12,9	28	4	61	22,5	9,5	16	5	3,0	0,16
16 x 16R x 3 - 3	15,0	12,9	38	4	61	22,5	9,5	16	5	3,0	0,42
20 x 5R x 3 - 4	19,0	16,9	38	4	40	21,0	9,5	12	5	3,0	0,21
20 x 5R x 3 - 5	19,0	16,9	33	4	45	14,5	9,5	16	5	3,0	0,16
20 x 10R x 3 - 4	19,0	16,9	33	4	60	22,0	9,5	16	5	3,0	0,31
20 x 10R x 3 - 4	19,0	16,9	38	4	64	22,0	9,5	20	5	3,0	0,46
20 x 20R x 3,5 - 2	19,0	16,7	38	4	64	22,0	9,5	20	5	3,0	0,34
20 x 20R x 3,5 - 3	19,0	16,7	36	4	77	28,5	9,5	20	5	3,0	0,37
20 x 20R x 3,5 - 3	19,0	16,7	38	4	77	28,5	9,5	20	5	3,0	0,44
25 x 5R x 3 - 4	24,0	21,9	38	4	45	14,5	9,5	16	5	3,0	0,19
25 x 10R x 3 - 4	24,0	21,9	38	4	64	22,0	9,5	20	5	3,0	0,28
25 x 25R x 3,5 - 2	24,0	21,4	48	4	80	30,0	10,5	20	5	3,0	0,73
25 x 25R x 3,5 - 3	24,0	21,4	40	4	95	37,5	10,5	20	5	3,0	0,50
32 x 5R x 3,5 - 4	31,0	28,4	48	4	48	14,0	9,5	20	5	3,0	0,32
32 x 5R x 3,5 - 4	31,0	28,4	50	4	48	14,0	9,5	20	5	3,0	0,35
32 x 10R x 3,969 - 5	31,0	27,9	48	4	77	28,5	9,5	20	5	3,0	0,50
32 x 10R x 3,969 - 5	31,0	27,9	50	4	77	28,5	9,5	20	5	3,0	0,61
32 x 20R x 3,969 - 2	31,0	27,9	56	4	64	22,0	9,5	20	5	3,0	0,74
32 x 20R x 3,969 - 3	31,0	27,9	50	4	84	32,0	9,5	20	5	3,0	0,66
32 x 32R x 3,969 - 2	31,0	27,9	56	4	88	34,0	9,5	20	5	3,0	1,03
32 x 32R x 3,969 - 3	31,0	27,9	50	4	120	50,0	9,5	20	5	3,0	0,97
40 x 5R x 3,5 - 5	39,0	36,4	56	4	54	17,0	9,5	20	5	3,0	0,44
40 x 5R x 3,5 - 5	39,0	36,4	63	4	70	25,0	14,0	20	5	3,0	0,82
40 x 10R x 6 - 4	38,0	33,8	63	4	70	25,0	14,0	20	5	3,0	0,88
40 x 10R x 6 - 6	38,0	33,8	63	4	90	35,0	14,0	20	5	3,0	1,15
40 x 20R x 6 - 3	38,0	33,8	63	4	88	34,0	14,0	20	5	3,0	1,13
40 x 40R x 6 - 2	38,0	33,8	72	4	113	46,5	14,0	20	5	3,0	2,23
40 x 40R x 6 - 3	38,0	33,8	63	4	142	61,0	14,0	20	5	3,0	1,85
50 x 5R x 3,5 - 5	49,0	46,4	68	4	54	17,0	9,5	20	5	3,0	0,62
50 x 10R x 6 - 6	48,0	43,8	72	5	90	35,0	14,0	20	5	3,0	1,34
50 x 20R x 6,5 - 3	48,0	43,4	85	5	92	30,0	14,0	32	6	3,5	2,39
63 x 10R x 6 - 6	61,0	56,8	85	5	90	29,0	14,0	32	6	3,5	1,59
80 x 10R x 6,5 - 6	78,0	73,3	105	5	95	31,5	15,0	32	6	3,5	2,23
Versioni con passo sinisti						,-				,-	_,
16 x 5L x 3 - 4	15,0	12,9	28	4	35	14,5	9,5	12	5	3,0	0,09
20 x 5L x 3 - 5	19,0	16,9	33	4	45	14,5	9,5	16	5	3,0	0,16
20 x 5L x 3 - 4	19,0	16,9	38	4	40	21,0	9,5	12	5	3,0	0,10
25 x 5L x 3 - 4	24,0	21,9	38	4	45	14,5	9,5	16	5	3,0	0,19
32 x 5L x 3,5 - 4	31,0	28,4	48	4	48	14.0	9,5	20	5	3.0	0,32
40 x 5L x 3,5 - 5	39,0	36,4	56	4	54	17,0	9,5	20	5	3,0	0,32
40 x 10L x 6 - 4	38.0	33,8	63	4	70	25,0	14,0	20	5	3,0	0,88
-0 X 10L X 0 4	1 30,0	33,0			10	25,0	14,0	20		5,0	0,00

Chiocciola singola avvitabile ZEV-E-S

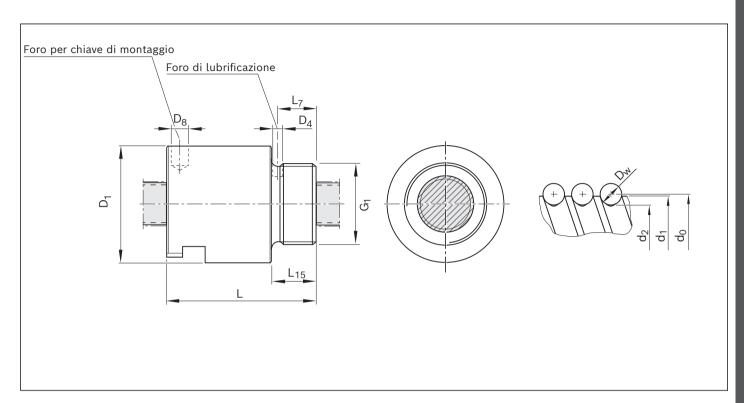
Dimensioni per l'installazione Rexroth

Con guarnizione a bassa resistenza d'attrito

Classe di precarico: C0, C00, C1 Classe di tolleranza T3²⁾, T5, T7, T9

Indicazioni per l'ordine:

BASA 20 x 5R x 3 ZEV-E-S - 4 00 0 0 T7 R 81K120 41K120 550 0 0


 d_0 = diametro nominale

P = passo (R = filettatura destrorsa)

D_W = diametro della sfera i = numero di circuiti

Categoria	Grandezza	Numero di	Fattori di d	carico ³⁾	Velocità ¹⁾
		identificazione	dyn. C	stat. Co	V _{max}
	d ₀ x P x D _w - i		(N)	(N)	(m/min)
Α	16 x 5R x 3 - 3	R2542 000 05	11 300	11 800	30,0
Α	16 x 10R x 3 - 3	R2542 000 15	11 500	12 300	60,0
В	20 x 5R x 3 - 4	R2542 100 05	17 200	21 500	30,0
Α	25 x 5R x 3 - 7	R2542 200 05	31 400	48 700	24,0
Α	25 x 10R x 3 - 5	R2542 200 15	23 200	34 200	48,0
В	32 x 5R x 3,5 - 5	R2542 300 05	31 700	50 600	18,8
В	32 x 10R x 3,969 - 5	R2542 300 15	38 000	58 300	37,5

- 1) Vedi "Fattore di velocità d0 · n" a pagina 133 e "Velocità critica ncr" a pagina 174
- 2) Classe di tolleranza T3 per grandezze secondo tabella Pagina 12
- 3) I fattori di carico sono validi solo per le classe di tolleranza T3 e T5. Con le altre classi di tolleranza vogliate tener conto del fattore di correzione f_{ac} a pagina 133.

Grandezza	(mm)									Massa
	d ₁	d_2	D_1	D ₄	D ₈	G ₁	L	L ₇	L ₁₅	m
$d_0 \times P \times D_w - i$			h10				±0,3			(kg)
16 x 5R x 3 - 3	15,0	12,9	32,5	2,7	4,2	M26 x 1,5	40	10,5	12	0,14
16 x 10R x 3 - 3	15,0	12,9	32,5	2,7	4,2	M26 x 1,5	54	10,5	12	0,21
20 x 5R x 3 - 4	19,0	16,9	38,0	2,7	8,0	M35 x 1,5	50	12,5	14	0,25
25 x 5R x 3 - 7	24,0	21,9	43,0	1,5	8,0	M40 x 1,5	60	17,5	19	0,36
25 x 10R x 3 - 5	24,0	21,9	43,0	2,0	8,0	M40 x 1,5	74	17,7	19	0,45
32 x 5R x 3,5 - 5	31,0	28,4	54,0	2,7	8,0	M48 x 1,5	69	17,5	19	0,58
32 x 10R x 3,969 - 5	31,0	27,9	54,0	2,7	8,0	M48 x 1,5	95	17,5	19	0,88

Chiocciola doppia flangiata FDM-E-S

Dimensioni per l'installazione Rexroth

Con guarnizioni Classe di precarico: C4, C5 Classi di tolleranza T3²⁾, T5, T7

Avviso: Fornitura esclusivamente

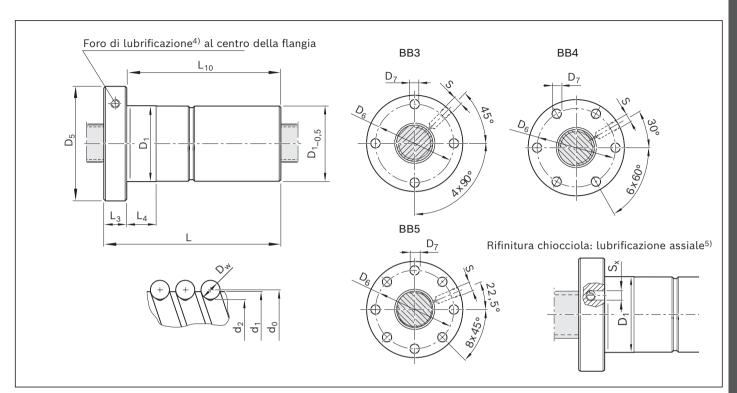
come unità vite a sfere BASA completa.

A Durante le operazioni di set up evitare collisioni fra le unità di lubrificazione frontali e una qualsiasi altra parte della macchina.

 d_0 = diametro nominale

P = passo (R = filettatura destrorsa)

D_W = diametro della sfera i = numero di circuiti



Indicazioni per l'ordine:

BASA 20 x 5R x 3 FDM-E-S - 4 00 1 5 T7 R 82Z120 41Z120 1250 0 1

Categoria	Grandezza	Numero di	Fattori di	carico ³⁾	Velocità ¹⁾
		identificazione	dyn. C	stat. C ₀	V _{max}
	d ₀ x P x D _w - i		(N)	(N)	(m/min)
В	16 x 5R x 3 - 4	R1502 010 23	14 800	16 100	30
В	20 x 5R x 3 - 4	R1502 110 33	17 200	21 500	30
В	25 x 5R x 3 - 4	R1502 210 33	19 100	27 200	30
В	25 x 10R x 3 - 4	R1502 240 33	18 800	27 000	60
В	32 x 5R x 3,5 - 4	R1502 310 33	25 900	40 000	23
В	32 x 10R x 3,969 - 5	R1502 340 33	38 000	58 300	47
В	40 x 5R x 3,5 - 5	R1502 410 33	34 900	64 100	19
В	40 x 10R x 6 - 4	R1502 440 33	60 000	86 400	38
В	40 x 10R x 6 - 6	R1502 440 34	86 500	132 200	38
В	40 x 20R x 6 - 3	R1502 470 33	45 500	62 800	75
В	50 x 5R x 3,5 - 5	R1502 510 33	38 400	81 300	15
В	50 x 10R x 6 - 4	R1502 540 33	66 500	109 000	30
В	50 x 10R x 6 - 6	R1502 540 34	95 600	166 500	30
В	50 x 20R x 6,5 - 5	R1502 570 34	90 800	149 700	60
В	63 x 10R x 6 - 4	R1502 640 33	74 200	140 500	24
В	63 x 10R x 6 - 6	R1502 640 34	106 600	214 300	24
В	63 x 20R x 6,5 - 5	R1502 670 34	100 700	190 300	48
В	80 x 10R x 6,5 - 6	R1502 740 34	130 100	291 700	19
В	80 x 20R x 12,7 - 6	R1502 770 04	315 200	534 200	30

- 1) Vedi "Fattore di velocità d
0 \cdot n" a pagina 133 e "Velocità critica ncr" a pagina 174
- 2) Classe di tolleranza T3 per grandezze secondo tabella Pagina 12
- I fattori di carico sono validi solo per le classe di tolleranza T3 e T5.
 Con le altre classi di tolleranza vogliate tener conto del fattore di correzione f_{ac} a pagina 133.

- 4) Versione raccordo di lubrificazione: lamatura $L_3 \leq 15 \text{ mm}$, svasatura $L_3 > 15 \text{ mm}$
- 5) Il foro di lubrificazione assiale S_{x} si trova sempre sul primitivo D_{6} dell'unità chiocciola.

Grandezza	(mm)													Massa
	d ₁	d_2	D ₁	D_5	Disposizione	D ₆	D_7	L	L ₃	L ₄	L ₁₀	S ⁴⁾	S _x	m
d ₀ x P x D _w - i			g6		dei fori									(kg)
16 x 5R x 3 - 4	15,0	12,9	28	53	BB3	40	6,6	72	12	10	60	M6	4	0,33
20 x 5R x 3 - 4	19,0	16,9	33	58	BB4	45	6,6	82	12	10	70	M6	4	0,45
25 x 5R x 3 - 4	24,0	21,9	38	63	BB4	50	6,6	82	12	10	70	M6	4	0,53
25 x 10R x 3 - 4	24,0	21,9	38	63	BB4	50	6,6	120	12	16	108	M6	4	0,70
32 x 5R x 3,5 - 4	31,0	28,4	48	73	BB4	60	6,6	88	13	10	75	M6	4	0,84
32 x 10R x 3,969 - 5	31,0	27,9	48	73	BB4	60	6,6	146	13	16	133	M6	4	1,22
40 x 5R x 3,5 - 5	39,0	36,4	56	80	BB4	68	6,6	100	15	10	85	M8x1	5	1,13
40 x 10R x 6 - 4	38,0	33,8	63	95	BB4	78	9,0	140	15	16	125	M8x1	5	2,25
40 x 10R x 6 - 6	38,0	33,8	63	95	BB4	78	9,0	180	15	16	165	M8x1	5	2,83
40 x 20R x 6 - 3	38,0	33,8	63	95	BB4	78	9,0	175	15	25	160	M8x1	5	2,66
50 x 5R x 3,5 - 5	49,0	46,4	68	98	BB4	82	9,0	100	15	10	85	M8x1	5	1,60
50 x 10R x 6 - 4	48,0	43,8	72	110	BB4	90	11,0	140	18	16	122	M8x1	5	2,74
50 x 10R x 6 - 6	48,0	43,8	72	110	BB4	90	11,0	180	18	16	162	M8x1	5	3,39
50 x 20R x 6,5 - 5	48,0	43,4	85	125	BB4	105	11,0	255	22	25	233	M8x1	5	6,71
63 x 10R x 6 - 4	61,0	56,8	85	125	BB4	105	11,0	140	22	16	118	M8x1	5	3,53
63 x 10R x 6 - 6	61,0	56,8	85	125	BB4	105	11,0	180	22	16	158	M8x1	5	4,32
63 x 20R x 6,5 - 5	61,0	56,3	95	140	BB4	118	14,0	255	22	25	233	M8x1	5	8,65
80 x 10R x 6,5 - 6	78,0	73,3	105	150	BB4	125	14,0	190	22	16	168	M8x1	5	6,35
80 x 20R x 12,7 - 6	76,0	67,0	125	180	BB5	152	18,0	340	25	25	315	M8x1	5	20,20

Chiocciola doppia flangiata FDM-E-B

Dimensioni per l'installazione analoghe a DIN 69 051, parte 5 flangia di forma B

Con guarnizioni Classe di precarico: C4, C5 Classi di tolleranza T3²⁾, T5, T7

Avviso: Fornitura esclusivamente

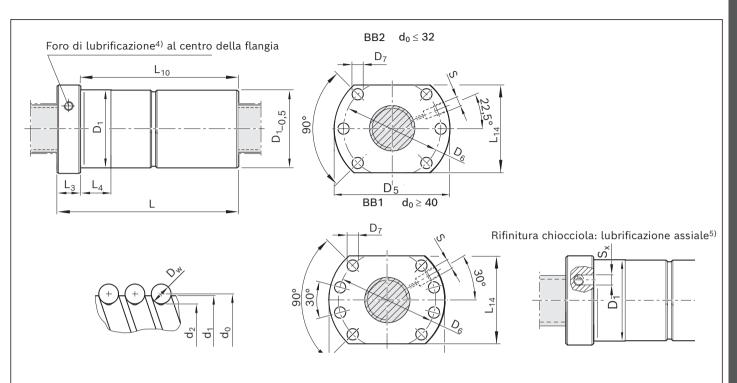
come unità vite a sfere BASA completa.

A Durante le operazioni di set up evitare collisioni fra le unità di lubrificazione frontali e una qualsiasi altra parte della macchina.

 d_0 = diametro nominale

= passo (R = filettatura destrorsa)

D_W = diametro della sfera i = numero di circuiti

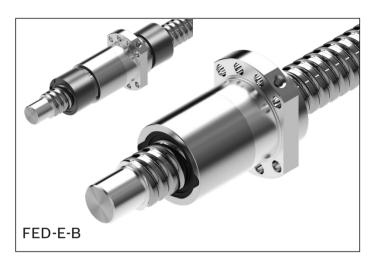


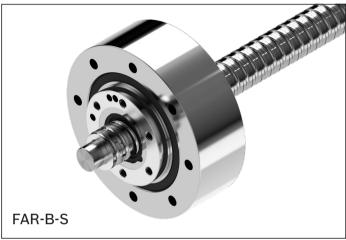
Indicazioni per l'ordine:

BASA 20 x 5R x 3 FDM-E-B - 4 00 1 5 T7 R 82Z120 41Z120 1250 0 1

Categoria	Grandezza	Numero di	Fattori di d	carico ³⁾	Velocità ¹⁾
		identificazione	dyn. C	stat. Co	V _{max}
	d ₀ x P x D _w - i		(N)	(N)	(m/min)
В	16 x 5R x 3 - 4	R1502 010 53	14 800	16 100	30
В	20 x 5R x 3 - 4	R1502 110 73	17 200	21 500	30
В	25 x 5R x 3 - 4	R1502 210 73	19 100	27 200	30
В	25 x 10R x 3 - 4	R1502 240 73	18 800	27 000	60
В	32 x 5R x 3,5 - 4	R1502 310 73	25 900	40 000	23
В	32 x 10R x 3,969 - 5	R1502 340 74	38 000	58 300	47
В	40 x 5R x 3,5 - 5	R1502 410 74	34 900	64 100	19
В	40 x 10R x 6 - 4	R1502 440 73	60 000	86 400	38
В	40 x 10R x 6 - 6	R1502 440 74	86 500	132 200	38
В	40 x 20R x 6 - 3	R1502 470 73	45 500	62 800	75
В	50 x 5R x 3,5 - 5	R1502 510 74	38 400	81 300	15
В	50 x 10R x 6 - 4	R1502 540 73	66 500	109 000	30
В	50 x 10R x 6 - 6	R1502 540 74	95 600	166 500	30
В	50 x 20R x 6,5 - 5	R1502 570 74	90 800	149 700	60
В	63 x 10R x 6 - 4	R1502 640 73	74 200	140 500	24
В	63 x 10R x 6 - 6	R1502 640 74	106 600	214 300	24
В	63 x 20R x 6,5 - 5	R1502 670 74	100 700	190 300	48
В	80 x 10R x 6,5 - 6	R1502 740 74	130 100	291 700	19
В	80 x 20R x 12,7 - 6	R1502 770 44	315 200	534 200	30

- 1) Vedi "Fattore di velocità d
0 \cdot n" a pagina 133 e "Velocità critica ncr" a pagina 174
- 2) Classe di tolleranza T3 per grandezze secondo tabella Pagina 12
- I fattori di carico sono validi solo per le classe di tolleranza T3 e T5.
 Con le altre classi di tolleranza vogliate tener conto del fattore di correzione f_{ac} a pagina 133.


- 4) Versione raccordo di lubrificazione: lamatura $L_3 \leq 15 \ \text{mm}$, svasatura $L_3 > 15 \ \text{mm}$
- 5) Il foro di lubrificazione assiale S_{x} si trova sempre sul primitivo D_{6} dell'unità chiocciola.


Grandezza	(mm)														Massa
	d ₁	d ₂	D ₁	D_5	Disposizione	D ₆	D_7	L	L ₃	L ₄	L ₁₀	L ₁₄	S ⁴⁾	S _x	m
d ₀ x P x D _w - i			g6		dei fori										(kg)
16 x 5R x 3 - 4	15,0	12,9	28	48	BB2	38	5,5	72	12	10	60	40,0	M6	4	0,29
20 x 5R x 3 - 4	19,0	16,9	36	58	BB2	47	6,6	82	12	10	70	44,0	M6	4	0,53
25 x 5R x 3 - 4	24,0	21,9	40	62	BB2	51	6,6	82	12	10	70	48,0	M6	4	0,57
25 x 10R x 3 - 4	24,0	21,9	40	62	BB2	51	6,6	120	12	16	108	48,0	M6	4	0,77
32 x 5R x 3,5 - 4	31,0	28,4	50	80	BB2	65	9,0	88	13	10	75	62,0	M6	4	0,96
32 x 10R x 3,969 - 5	31,0	27,9	50	80	BB2	65	9,0	146	13	16	133	62,0	M6	4	1,34
40 x 5R x 3,5 - 5	39,0	36,4	63	93	BB1	78	9,0	100	15	10	85	70,0	M8x1	5	1,68
40 x 10R x 6 - 4	38,0	33,8	63	93	BB1	78	9,0	140	15	16	125	70,0	M8x1	5	2,15
40 x 10R x 6 - 6	38,0	33,8	63	93	BB1	78	9,0	180	15	16	165	70,0	M8x1	5	2,73
40 x 20R x 6 - 3	38,0	33,8	63	93	BB1	78	9,0	175	15	25	160	70,0	M8x1	5	2,56
50 x 5R x 3,5 - 5	49,0	46,4	75	110	BB1	93	11,0	100	15	10	85	85,0	M8x1	5	2,25
50 x 10R x 6 - 4	48,0	43,8	75	110	BB1	93	11,0	140	18	16	122	85,0	M8x1	5	2,97
50 x 10R x 6 - 6	48,0	43,8	75	110	BB1	93	11,0	180	18	16	162	85,0	M8x1	5	3,73
50 x 20R x 6,5 - 5	48,0	43,3	75	110	BB1	93	11,0	255	18	25	237	85,0	M8x1	5	4,93
63 x 10R x 6 - 4	61,0	56,8	90	125	BB1	108	11,0	140	22	16	118	95,0	M8x1	5	4,00
63 x 10R x 6 - 6	61,0	56,8	90	125	BB1	108	11,0	180	22	16	158	110,0	M8x1	5	4,45
63 x 20R x 6,5 - 5	61,0	56,3	95	135	BB1	115	13,5	255	22	25	233	100,0	M8x1	5	8,21
80 x 10R x 6,5 - 6	78,0	73,3	105	145	BB1	125	13,5	190	22	16	168	110,0	M8x1	5	5,93
80 x 20R x 12,7 - 6	76,0	67,0	125	165	BB1	145	13,5	340	25	25	315	130,0	M8x1	5	19,40

Chiocciole, serie High Performance

Serie High Performance

Le unità viti a sfere della serie HP sono disponibili nel diametro nominale 20 - 63 mm, nonché in passi di 10 - 40 mm. Il tipo di chiocciola HP comprende una chiocciola singola flangiata con vite rotante o disponibile come chiocciola rotante.

Classi di precarico

Opzione	Classe di	Definizione							
	precarico								
0	C0	Gioco assiale standard							
1	1 C00 Gioco assiale ridotto								
2	C3	Precarico alto (chiocciola singola)							
3	C1	Precarico leggero (chiocciola singola)							
4	C4	Precarico alto (chiocciola doppia)							
5	C5	Precarico medio (chiocciola doppia)							
6	C2	Precarico medio (chiocciola singola)							
Per la correlazione delle classi di precarico vedi versioni delle chiocciole									

Chiocciola singola flangiata rotante FAR-B-S

Vantaggi sostanziali di sistemi con chiocciole rotanti

Momento d'inerzia

Con viti lunghe, nella fase di accelerazione non occorre mettere in rotazione la vite, bensì solo la chiocciola. Il momento d'inerzia di massa della vite non è pertanto determinante. Il momento d'inerzia della chiocciola è relativamente piccolo e non dipende più dalla corsa richiesta.

Dinamica

È possibile fare a meno delle complicate progettazioni di cuscinetti di estremità necessari per una dinamica elevata, ad es. a cuscinetto di vincolo assiale su entrambi i lati con cuscinetti a doppia corona di sfere a contatto obliquo.

Stiratura

Dal momento che la vite è ferma, una stiratura della vite è realizzabile con dispendio relativamente ridotto di tempo ed energia:

- aumento del carico assiale ammesso (carico di punta); non limitato dal cuscinetto d'estremità
- compensazione di influssi di temperatura
- aumento della rigidezza totale

Design e tolleranze di produzione

Grazie all'utilizzo di chiocciole con elevata precisione di oscillazione assiale e radiale si riduce a un minimo l'impulso vibrazionale della vite. Tutti gli elementi funzionali provengono da un unico produttore. Non occorre pertanto l'apporto di applicazioni proprie.

Raffreddamento a liquido

Una vite forata consente di migliorare facilmente il raffreddamento:

un raffreddamento della vite fissa può essere realizzato con dispendio relativamente ridotto di tempo ed energia. Con un raffreddamento regolato è possibile neutralizzare quasi completamente i cambiamenti di lunghezza dovuti a variazioni di temperatura.

Vantaggi per l'utente

- Convenienza grazie a unità completa
- Il passo della vite e il rapporto di riduzione della cinghia consentono un adeguamento a velocità e carichi differenti
- Spazio di montaggio ridotto grazie alla struttura compatta
- Minori oneri per il montaggio a cura del cliente e funzionalità integrale
- Costi più bassi di sistema
- Elevata precisione di posizionamento
- Abbinabile, per compiti di posizionamento particolarmente complessi, con il sistema di misura integrato nella rotaia di guida per la misurazione diretta della corsa

- 1 Vite a sfere (BASA)-vite
- 2 Chiocciola rotante FAR

Chiocciola singola flangiata FED-E-B

Dimensioni per l'installazione analoghe a DIN 69 051, parte 5 flangia di forma B

Chiocciola per sensibile aumento del fattore di carico dinamico e statico Con guarnizioni standard Classe di precarico: C0, C00, C1, C2 Classe di tolleranza T3¹⁾, T5, T7, T9

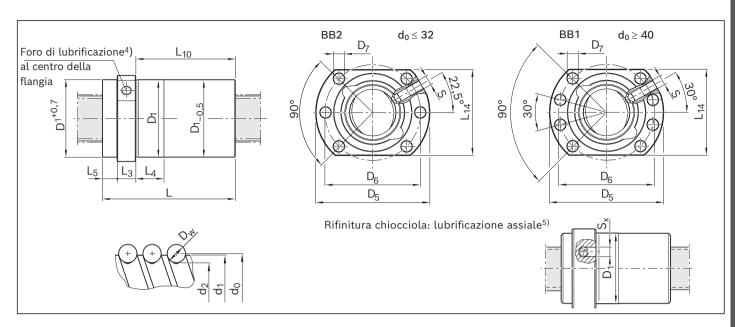
A Durante le operazioni di set up evitare collisioni fra le unità di lubrificazione frontali.

Dati per l'ordinazione:

	BASA	40x20R x 6	FED-E-B - 8	00	1	2	T5	R	82Z300	41K300	1250	0	1
--	------	------------	-------------	----	---	---	----	---	--------	--------	------	---	---

Categoria	Grandezza	Numero di	Fattori di carico ³⁾		Velocità ²⁾
		identificazione	dyn. C	stat. C ₀	V _{max}
	d ₀ x P x D _W - i		(N)	(N)	(m/min)
В	16 x 16 R x 3 - 6	R1512 060 32	17 800	24 200	96
В	20 x 20 R x 3,5 - 6	R1512 170 32	25 700	38 100	120
В	25 x 25 R x 3,5 - 6	R1512 280 32	28 500	47 100	150
Α	32 x 20 R x 3,969 - 6	R1512 370 32	38 300	67 300	94
Α	32 x 32 R x 3,969 - 6	R1512 390 32	37 900	68 000	150
Α	40 x 20 R x 6 - 8	R1512 470 32	95 500	171 100	75
В	40 x 25 R x 6 - 8	R1512 480 32	91 400	171 700	93
В	40 x 30 R x 6 - 8	R1512 4A0 32	90 400	170 300	112
Α	40 x 40 R x 6 - 6	R1512 490 32	71 500	124 500	150
Α	50 x 20 R x 6,5 - 8	R1512 570 32	116 500	240 000	60
В	50 x 25 R x 6,5 - 6	R1512 580 32	92 600	175 100	75
В	50 x 30 R x 6,5 - 6	R1512 5A0 32	114 500	237 700	90
В	50 x 40 R x 6,5 - 6	R1512 590 32	89 300	171 500	120
Α	63 x 20 R x 6,5 - 8	R1512 670 32	130 800	292 000	48
Α	63 x 40 R x 6,5 - 6	R1512 690 32	100 000	230 600	95

¹⁾ Classe di tolleranza T3 per grandezze secondo tabella Pagina 12


 d_0 = diametro nominale

P = passo (R = filettatura destrorsa)

D_W = diametro della sfera i = numero di circuiti

²⁾ Vedi "Fattore di velocità d $0 \cdot n$ " a pagina 133 e "Velocità critica ncr" a pagina 174

I fattori di carico sono validi solo per le classe di tolleranza T3 e T5.
 Con le altre classi di tolleranza vogliate tener conto del fattore di correzione f_{ac} a pagina 133.

- 4) Versione raccordo di lubrificazione: lamatura $L_3 \le 15$ mm, svasatura $L_3 > 15$ mm
- 5) Il foro di lubrificazione assiale S_x si trova sempre sul primitivo D_6 dell'unità chiocciola.

Grandezza	(mm)															Massa
	d ₁	d ₂	D ₁	D_5	Disposizione	D ₆	D ₇	L	L ₃	L ₄	L ₅	L ₁₀	L ₁₄	S ⁴⁾	S _x	m
$d_0 \times P \times D_W - i$			g6		dei fori											(kg)
16 x 16 R x 3 - 6	15,0	12,9	28	48	BB2	38	5,5	61	12	20	6,0	43,0	40	M6	4	0,27
20 x 20 R x 3,5 - 6	19,0	16,7	36	58	BB2	47	6,6	77	12	25	8,0	57,0	44	M6	4	0,48
25 x 25 R x 3,5 - 6	24,0	21,4	40	62	BB2	51	6,6	95	12	30	9,0	74,0	48	M6	4	0,63
32 x 20 R x 3,969 - 6	31,0	27,9	50	80	BB2	65	9,0	84	13	25	11,0	60,0	62	M6	4	0,91
32 x 32 R x 3,969 - 6	31,0	27,9	50	80	BB2	65	9,0	120	13	40	12,0	95,0	62	M6	4	1,25
40 x 20 R x 6 - 8	38,0	33,8	63	93	BB1	78	9,0	108	15	25	13,0	80,0	70	M8x1	5	1,85
40 x 25 R x 6 - 8	38,0	33,8	63	93	BB1	78	9,0	127	15	30	11,5	100,5	70	M8x1	5	1,88
40 x 30 R x 6 - 8	38,0	33,8	63	93	BB1	78	9,0	145	15	35	11,5	118,5	70	M8x1	5	2,13
40 x 40 R x 6 - 6	38,0	33,8	63	93	BB1	78	9,0	142	15	45	11,5	115,5	70	M8x1	5	2,35
50 x 20 R x 6,5 - 8	48,0	43,3	75	110	BB1	93	11,0	112	18	25	13,0	81,0	85	M8x1	5	2,50
50 x 25 R x 6,5 - 6	48,0	43,3	75	110	BB1	93	11,0	107	18	25	13,5	75,5	85	M8x1	5	2,45
50 x 30 R x 6,5 - 6	48,0	43,3	75	110	BB1	93	11,0	151	18	35	15,0	118,0	85	M8x1	5	3,04
50 x 40 R x 6,5 - 6	48,0	43,3	75	110	BB1	93	11,0	149	18	45	15,0	116,0	85	M8x1	5	3,40
63 x 20 R x 6,5 - 8	61,0	56,3	95	135	BB1	115	13,5	112	22	25	11,0	79,0	100	M8x1	5	3,90
63 x 40 R x 6,5 - 6	61,0	56,3	95	135	BB1	115	13,5	149	22	45	12,0	115,0	100	M8x1	5	5,05

Chiocciola singola flangiata rotante FAR-B-S

Dimensioni per l'installazione Rexroth Con guarnizioni

Classe di precarico: C1, C2, C3 Classe di tolleranza T3²⁾, T5, T7

Il gruppo è composto da: chiocciola, cuscinetto di vincolo assiale a doppia corona di sfere a contatto obliquo e ghiera a tacche NMZ

Rilubrificabile con grasso della classe 2 NLGI sul raccordo di lubrificazione fisso dell'anello esterno del cuscinetto da fermo

Avviso: Fornitura esclusivamente come unità vite a sfere

BASA completa.

 d_0 = diametro nominale

P = passo (R = filettatura destrorsa)

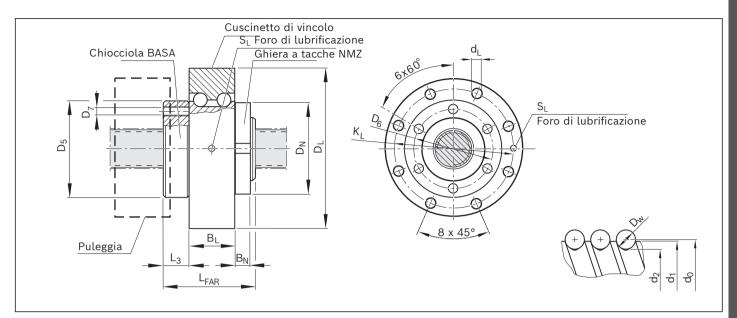
D_W = diametro della sfera i = numero di circuiti

Indicazioni per l'ordine:

BASA	40x20R x 6	FAR-B-S - 3	00	1	6	T5	R	51K300	51K300	1250	0	1

Cate- goria	Grandezza FAR	Grandezza	Numero di identificazione Gruppo	Fattori d carico ¹⁾		Massa Momento d'inerzia		Momento d'attrito cuscinetto	Numero di giri max. ³⁾
				dyn. C	stat. C ₀	m _{FAR}	J _{rotFAR}	M _{RL}	n_{G}
		d ₀ x P x D _w - i		(N)	(N)	(kg)	$(kg \cdot m^2 \cdot 10^{-4})$	(Nm)	(min ⁻¹)
Α	32	32 x 10R x 3,969 - 5	R2532 301 01	38 000	58 300	5,8	22,5	1,0	3 000
В		32 x 20R x 3,969 - 3	R2532 301 11	23 600	33 700	5,9	22,9		
В		32 x 32R x 3,969 - 3	R2532 301 21	23 400	34 000	6,3	25,1		
Α	40	40 x 10R x 6 - 5	R2532 401 01	73 400	109 300	7,3	42,7	1,2	2 800
В		40 x 20R x 6 - 3	R2532 401 31	45 500	62 800	7,5	43,9		
В		40 x 40R x 6 - 3	R2532 401 41	44 400	62 300	8,4	50,7		
Α	50	50 x 10R x 6 - 6	R2532 501 01	95 600	166 500	8,3	67,6	1,4	2 700
В		50 x 20R x 6,5 - 5	R2532 501 31	90 800	149 700	9,1	76,0		
В		50 x 40R x 6,5 - 3	R2532 501 41	55 800	85 900	9,5	79,8		
В	63	63 x 10R x 6 - 6	R2532 601 01	106 600	214 300	12,8	139,0	2,3	2 300
В		63 x 20R x 6,5 - 5	R2532 601 11	100 700	190 300	13,5	156,4		
В		63 x 40R x 6,5 - 3	R2532 601 21	64 100	114 100	13,9	161,6		

¹⁾ Fattori di carico calcolati secondo DIN ISO 3408-5


Rigidezze FAR

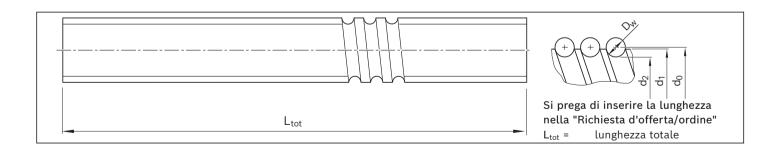
Grandezza	Grandezza	Rigidezza	a	Rigidezza totale	unità chiocciola	(N/µm)
FAR		vite	Cusci-	Classe di	Classe di	Classe di
			netto	precarico C1	precarico C2	precarico C3
		Rs	R _{aL}	R _G	R _G	R _G
	d ₀ x P x D _w - i	(Nm/µm)	(N/µm)			
32	32 x 10R x 3,969 - 5	141	860	320	350	380
	32 x 20R x 3,969 - 3	141	860	220	250	280
	32 x 32R x 3,969 - 3	141	860	220	240	270
40	40 x 10R x 6 - 5	211	950	390	420	450
	40 x 20R x 6 - 3	211	950	270	300	330
	40 x 40R x 6 - 3	211	950	270	290	330
50	50 x 10R x 6 - 6	345	1 050	490	520	560
	50 x 20R x 6,5 - 5	340	1 050	450	480	530
	50 x 40R x 6,5 - 3	340	1 050	320	350	390
63	63 x 10R x 6 - 6	569	1 150	560	600	640
	63 x 20R x 6,5 - 5	563	1 150	520	560	610
	63 x 40R x 6,5 - 3	563	1 150	390	420	460

²⁾ Classe di tolleranza T3 per grandezze secondo tabella Pagina 12

³⁾ Limitazione dovuta al numero di giri max. del cuscinetto. Cuscinetto precaricato senza carico di lavoro esterno. Tempo di inserzione 25%; max. temp. di regime +50 °C

I fattori di carico sono validi solamente per la classe di tolleranza T3 e T5.
 Con le altre classi di tolleranza vogliate tener conto del fattore di correzione f_{ac} a pagina 133.

FAR	Grandezza	Dime	ensioni	(mm)											
Grandezza	d ₀ x P x D _w - i	d ₁	d ₂	L _{FAR}	D ₅	D ₆	D ₇	L ₃	D _L -0,018	B_L	K_{L}	d _L +0,3/-0,1	S _L ⁵⁾	D _N	B_N
32	32 x 10R x 3,969 - 5 32 x 20R x 3,969 - 3	31	27,9	77 84	80	65	M8	11	145	49	120	8,8	M6	75	16
40	32 x 32R x 3,969 - 3 40 x 10R x 6 - 5 40 x 20R x 6 - 3	38	33,8	120 80 88	93	80	M8	12	155	49	130	8,8	M6	92	18
50	40 x 40R x 6 - 3 50 x 10R x 6 - 6	48	43,8	142 90	105	90	M8	13	165	49	140	8,8	M6	105	18
-00	50 x 20R x 6,5 - 5 50 x 40R x 6,5 - 3	. 01	43,3	132	100	110	1110	0.0	100	00	405	44.0	140	100	
63	63 x 10R x 6 - 6 63 x 20R x 6,5 - 5 63 x 40R x 6,5 - 3	61	56,8 56,3	100 132 149	130	110	M10	20	190	60	165	11,0	M6	120	20


⁵⁾ Alla consegna, entrambi i raccordi di lubrificazione S_L sono chiusi con grani filettati (M6). Per aprire il raccordo di lubrificazione desiderato rimuovere il grano filettato.

Vite di precisione

Grandezza	Numero di ider			(mm))	Momento d'inerzia	Lunghezza standard	massima (mm) su	Massa
d ₀ x P x D _W	T5	T7	Т9	d ₁	d ₂	(kg · cm ² /m)	Juliana	richiesta	(kg/m)
6 ¹⁾ x 1R x 0,8	_	_	_	6,0	5,3	0,02	_	-	0,19
6 ¹⁾ x 2R x 0,8	_	_	-	6,0	5,3	0,02	_	_	0,19
8 ¹⁾ x 1R x 0,8	_	_	-	8,0	7,3	0,04	_	_	0,36
8 ¹⁾ x 2R x 1,2	_	_	-	8,0	7,0	0,04	_	_	0,36
8 x 2,5R x 1,588	R1531 235 00	R1531 237 00	R1531 239 00	7,5	6,3	0,04	1 500	2 500	0,30
8 x 5R x 1,588	R1531 265 00	R1531 267 00	R1531 269 00	7,5	6,3	0,04	1 500	2 500	0,30
12 ¹⁾ x 2R x 1,2	-	-	-	11,7	10,7	0,13	-	_	0,79
12 x 5R x 2	R1531 465 10	R1531 467 10	R1531 469 10	11,4	9,9	0,11	1 500	2 500	0,75
12 x 10R x 2	R1531 495 00	R1531 497 00	R1531 499 00	11,4	9,9	0,11			0,74
16 x 5L x 3	R1551 015 00	R1551 017 00	R1551 019 00	15,0	12,9	0,31	1 500	3 500	1,24
16 x 5R x 3	R1511 015 00	R1511 017 00	R1511 019 00	15,0	12,9	0,31	. 555		1,24
16 x 10R x 3	R1511 045 00	R1511 047 00	R1511 049 00	15,0	12,9	0,31			1,23
16 x 16R x 3	R1511 065 10	R1511 067 10	R1511 069 10	15,0	12,9	0,34	-		1,29
20 x 5R x 3	R1511 115 00	R1511 117 00	R1511 119 00	19,0	16,9	0,84	1 500	3 500	2,03
20 x 5L x 3	R1551 115 00	R1551 117 00	R1551 119 00	19,0	16,9	0,84	1 000	0 000	2,03
20 x 10R x 3	R1511 145 00	R1511 147 00	R1511 149 00	19,0	16,9	0,84	-		2,03
20 x 20R x 3,5	R1511 175 10	R1511 177 10	R1511 179 10	19,0	16,7	0,81	1		1,99
20 ¹⁾ x 40R x 3,5	_	-	-	19,0	16,4	0,86	_	_	2,06
25 x 5R x 3	R1511 215 00	R1511 217 00	R1511 219 00	24,0	21,9	2,22	2 500	5 500	3,31
25 x 5L x 3	R1551 215 00	R1551 217 00	R1551 219 00	24,0		2,22	2 300	3 300	3,31
25 x 10R x 3	R1511 245 00	R1511 247 00	R1511 249 00	24,0	21,9	2,39			3,43
25 x 25R x 3,5	R1511 285 10	R1511 287 10	R1511 289 10	24,0	21,4	2,15	-		3,25
32 x 5R x 3,5	R1511 315 00	R1511 317 00	R1511 319 00	31,0	28,4	6,05	2 500	5 500	5,45
32 x 5L x 3,5	R1551 315 00	R1551 317 00	R1551 319 00			6,05	2 300	3 300	5,45
32 x 10R x 3,969	R1511 345 10	R1511 347 10	R1511 349 10	31,0	27,9	6,40	-		5,60
32 x 20R x 3,969	R1511 375 10	R1511 377 10	R1511 379 10	31,0	27,9	6,39	-		5,60
32 x 32R x 3,969	R1511 375 10	R1511 397 10	R1511 399 10	31,0	27,9	6,17	-		5,50
32 ¹⁾ x 64R x 3,969	_	_	_	31,0	27,9	6,04	_	_	5,44
40 x 5R x 3,5	R1511 415 00	R1511 417 00	R1511 419 00	39,0	36,4	15,64	4 500	5 500	8,78
40 x 5L x 3,5	R1551 415 00	R1551 417 00	R1551 419 00	39,0	36,4	15,64	4 300	3 300	8,78
40 x 10R x 6	R1511 445 00	R1511 447 00	R1511 449 00	38,0	33,8	13,55	-	7 500	8,15
40 x 10L x 6	R1551 445 00	R1551 447 00	R1551 449 00	38,0	33,8	13,55	-	7 300	8,15
40 x 10E x 6	R1511 455 00	R1511 457 00	R1511 459 00	38,0	33,8	13,97	-	5 000	8,27
40 x 16R x 6	R1511 465 00	R1511 467 00	R1511 469 00	38,0	33,8	12,90	-	3 000	7,95
40 x 10R x 6	R1511 475 00	R1511 477 00	R1511 479 00		33,8	13,52		7 500	8,14
40 x 25R x 6	R1511 475 00	R1511 487 00	R1511 489 00	_	33,8	13,51		5 000	8,67
	R1511 465 00	R1511 4A7 00	R1511 4A9 00		33,8	13,71		3 000	8,67
40 x 30R x 6		R1511 497 10		38,0		13,42		7 500	
40 x 40R x 6	R1511 495 10		R1511 499 10				4 500	5 500	8,11
50 x 5R x 3,5	R1511 515 00 R1511 545 00	R1511 517 00	R1511 519 00 R1511 549 00		46,4 43,8	40,03	4 500	7 500	14,05
50 x 10R x 6	R1511 545 00	R1511 547 00	R1511 549 00			35,71		5 000	13,25
50 x 12R x 6	R1511 565 00	R1511 557 00	R1511 569 00		43,8	36,58		5 000	13,41
50 x 16R x 6 50 x 20R x 6,5		R1511 567 00	R1511 569 00		43,8	34,37		7 500	13,00
	R1511 575 10	R1511 577 10			43,3	34,50		7 500	13,01
50 x 25R x 6,5	R1511 585 00	R1511 587 00	R1511 589 00		43,3	32,40		F 000	12,58
50 x 30R x 6,5	R1511 5A5 00	R1511 5A7 00	R1511 5A9 00		43,3	36,64		5 000	13,42
50 x 40R x 6,5	R1511 595 10	R1511 597 10	R1511 599 10		43,3	34,34	4.500	7 500	12,98
63 x 10R x 6	R1511 645 00	R1511 647 00	R1511 649 00		56,8	95,82	4 500	7 500	21,72
63 x 20R x 6,5	R1511 675 10	R1511 677 10	R1511 679 10		56,3	93,29			21,42
63 x 40R x 6,5	R1511 695 10	R1511 697 10	R1511 699 10	61,0	56,3	93,08	4.500	7.500	21,40
80 x 10R x 6,5	R1511 745 00	R1511 747 00	R1511 749 00		73,3	256,86	4 500	7 500	35,58
80 ¹⁾ x 20R x 12,7	-	-	-		67,0	211,51	_	_	32,16
80 ¹⁾ x 40R x 12,7	-	-	_	76,0	67,0	234,30	_	_	33,88

¹⁾ Misura non disponibile come lunghezza di taglio

Panoramica estremità viti

Estremità delle viti, forme per estremità vite lato sinistro o destro

Versione ba	tà delle viti, forme per estremi ase	ta vite tato	con cava per chiavetta
00		Pagina 59	
L1		Pagina 60	
			O2 Pagina 62
K1 K1A		Pagina 64	
			12 12A Pagina 66
21		Pagina 68	Pagina 68
31		Pagina 70	
41		Pagina 72	
51 51A		Pagina 74	52 52A Pagina 74
61		Pagina 76	62 Pagina 76
71		Pagina 78	72 Pagina 78
81 81A		Pagina 80	82 82A Pagina 82
831/83 83A		Pagina 84	841/84 Pagina 84
91 91A		Pagina 86	92 92A Pagina 86
931/93 93A		Pagina 88	941/94 94A Pagina 88
N1 N1A		Pagina 90	N2 N2A Pagina 90

Lavorazione delle estremità lato frontale

Z Foro di centraggio DIN 332-D	S Foro esagonale	G Filettatura interna
	0	

Abbreviazioni

= fattore di carico dinamico = fattore di carico statico C_0

 $d_0 \times P = grandezza$

= diametro nominale d_0

F_{aB} = carico di rottura assiale ghiera a tacche

= filettatura interna

= numero di giri limite (grasso) N٥ = numero di identificazione

= coppia di serraggio ghiera a tacche

M_{AG} = coppia di serraggio grano filettato

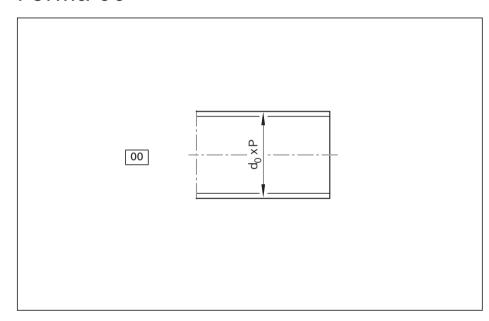
momento d'attrito del cuscinetto con disco di tenuta $M_{RL} =$

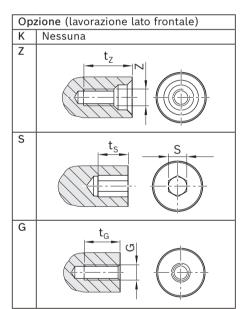
 $M_{\rm p}$ coppia motrice massima ammessa

(presupposto: nessun carico radiale sul codolo di

azionamento)

rigidezza (assiale) R_{fb}

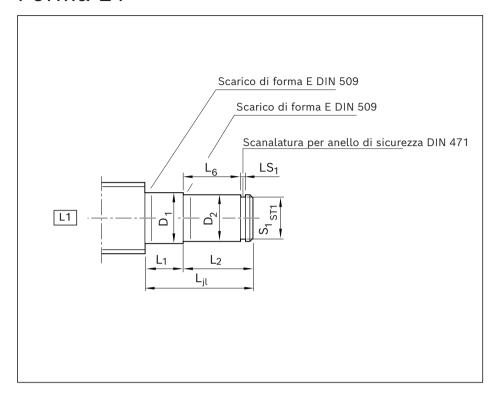

rigidezza al momento di ribaltamento R_{kl}

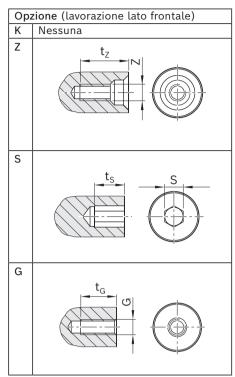

Р passo (R = filettatura destrorsa)

S = foro esagonale

Ζ = foro di centraggio

Forma 00




Dati per l'ordinazione:

20x5R x 3 | SEM-E-S - 4 | 00 | 1 | 2 | T7 | R | 00Z200 | 82Z120 | 1250 | 0 | 1

Forma	Versione	Grandezza		(mm)					
				Foro di cer	ntraggio	Foro esagon	ale	Filettatura	
		d ₀	P	Z	tz	S	t _S	G	tg
00	060	6	1/2	-	_	_	_	_	_
	080	8	1/2/2,5/5	-	_	_	_	_	_
	120	12	2/5/10	МЗ	9	4	4	M4	6
	160	16	5/10/16	M4	10	5	5	M5	8
	200	20	5/10/20/40	M6	16	8	8	M6	9
	250	25	5/10/25	M8	19	10	10	M8	12
	320	32	5/10/20/32/64	M10	22	12	12	M10	15
	400	40	5/10/12/16/20/25/30/40	M12	28	14	14	M12	18
	500	50	5/10/12/16/20/25/30/40	M16	36	17	17	M16	24
	630	63	10/20/40	M20	42	17	17	M20	30
	800	80	10/20/40	M20	42	19	19	M24	36

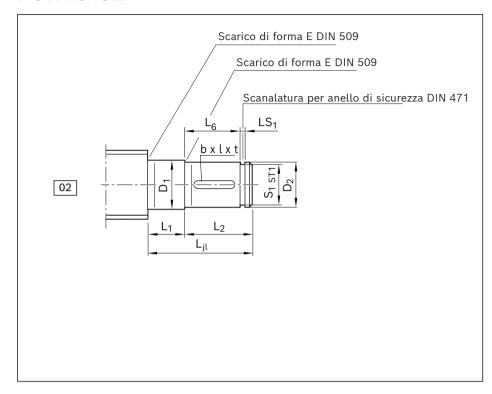
Forma L1

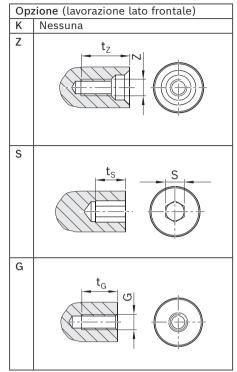
Indicazioni per l'ordine:

BASA | 20x5R x 3 | SEM-E-S - 4 | 00 | 1 | 2 | T7 | R | L1Z120 | 82Z120 | 1250 | 0 | 1

Forma	Versione ¹⁾	Gran	ndezza	(mm)											
													Foro di c	entraggio	
		d ₀	P	L _{jl}	D ₁	L ₁	D ₂	L_2	L ₆	S ₁	S _{T1}	L _{S1}	Z	tz	
					h11		j6					H13			
L1	050	8	1/2/2,5/5	17	6,0	10	5	7	5	4,8	h10	0,70	_	_	
	060	12	2/5/10	18	9,5	10	6	8	6	5,7	h10	0,80	_	_	
	100	16	5/10/16	22	12,5	10	10	12	9	9,6	h10	1,10	M3	9,0	
	120	20	5/10/20/40	23	16,0	10	12	13	10	11,5	h11	1,10	M4	10,0	
	150	20	5/10/20/40	24	16,0	10	15	14	11	14,3	h11	1,10	M5	12,5	
	170	25	5/10/25	25	21,0	10	17	15	12	16,2	h11	1,10	M6	16,0	
	200	32	5/10/20/32/64	28	27,5	10	20	18	14	19,0	h11	1,30	M6	16,0	
	250	32	5/10/20/32/64	29	27,5	10	25	19	15	23,9	h12	1,30	M10	22,0	
	300	40	5/10/12/16/20/25/30/40	30	33,5	10	30	20	16	28,6	h12	1,60	M10	22,0	
	350	50	5/10/12/16/20/25/30/40	32	43,0	10	35	22	17	33,0	h12	1,60	M12	28,0	
	500	63	10/20/40	37	56,0	10	50	27	20	47,0	h12	2,15	M16	36,0	
	600	80	10/20/40	39	66,5	10	60	29	22	57,0	h12	2,15	M20	42,0	

¹⁾ Con la versione è possibile stabilire in modo univoco la correlazione tra le estremità delle viti e i gruppi cuscinetti di vincolo.

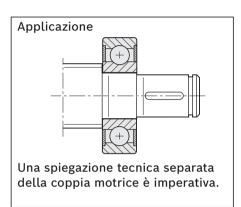

Cuscinetti di vincolo per viti con estremità di forma L1



					Cuscinetto ra	diale rigido a sfere	Anello di si	curezza
Versione ¹⁾	Foro esa	gonale	Filettatı	ıra				
	S	ts	G	t _g	Sigle	Numero di identificazione	Sigla	Numero di identificazione
050	_	_	_	_	625.2RS	R3414 048 00	5x0,6	R3410 742 00
060	_	_	-	_	626.2RS	R3414 043 00	10x1	R3410 736 00
100	4	4	M4	6	6200.2RS	R3414 049 00	10x1	R3410 745 00
120	4	4	M5	8	6201.2RS	R3414 042 00	12x1	R3410 712 00
150	4	4	M6	9	6202.2RS	R3414 074 00	15x1	R3410 748 00
170	5	5	M6	9	6203.2RS	R3414 050 00	17x1	R3410 749 00
200	5	5	M8	12	6204.2RS	R3414 038 00	20x1,2	R3410 735 00
250	8	8	M10	15	6205.2RS	R3414 063 00	25x1,2	R3410 750 00
300	10	10	M12	18	6206.2RS	R3414 051 00	30x1,5	R3410 724 00
350	12	12	M12	18	6207.2RS	R3414 075 00	35x1,5	R3410 725 00
500	19	19	M20	30	6210.2RS	R3414 077 00	50x2	R3410 727 00
600	19	19	M24	36	6212.2RS	R3414 078 00	60x2	R3410 764 00

Forma 02

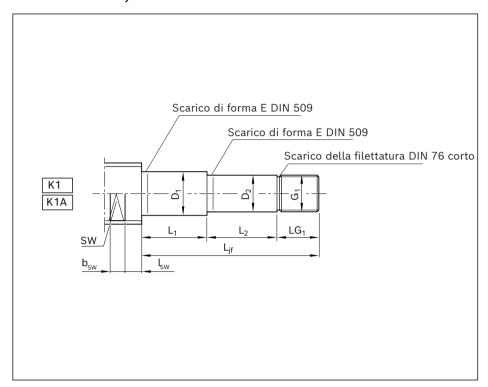
Indicazioni per l'ordine:

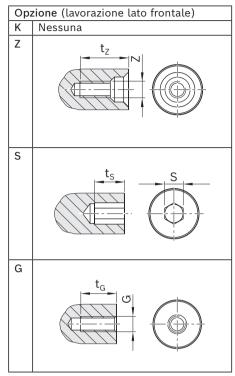

BASA | 20x5R x 3 | SEM-E-S - 4 | 00 | 1 | 2 | T7 | R | 02Z120 | 82Z120 | 1250 | 0 | 1

Forma	Versio-	Gran	dezza	(mm)											
	ne ¹⁾												Cava per chiavet	ta secor	do DIN 6885	
		d ₀	P	Ljl	D ₁	L ₁	D_2	L ₂	L ₆	S_1	ST1	LS ₁	b	ι	t	
					j6		h7					H13	P9			
02	100	16	5/10/16	32	10	9	8	23	20	7,6	h10	0,90	2	14	1,2	
	120	20	5/10/20/40	38	12	10	10	28	25	9,6	h10	1,10	3	20	1,8	
	150	20	5/10/20/40	39	15	11	12	28	25	11,5	h11	1,10	4	20	2,5	
	170	25	5/10/25	45	17	12	15	33	30	14,3	h11	1,10	5	25	3,0	
	200	32	5/10/20/32/64	58	20	14	18	44	40	17,0	h11	1,30	6	28	3,5	
	250	32	5/10/20/32/64	69	25	15	22	54	50	21,0	h11	1,30	6	36	3,5	
	300	40	5/10/12/16/20/25/30/40	70	30	16	28	54	50	26,6	h12	1,60	8	36	4,0	
	350	50	5/10/12/16/20/25/30/40	82	35	17	32	65	60	30,3	h12	1,60	10	40	5,0	
	500	63	10/20/40	107	50	20	48	87	80	45,5	h12	1,85	14	63	5,5	
- <u></u>	600	80	10/20/40	109	60	22	58	87	80	55,0	h12	2,15	16	63	6,0	

¹⁾ Con la versione è possibile stabilire in modo univoco la correlazione tra le estremità delle viti e i gruppi cuscinetti di vincolo.

Cuscinetti di vincolo per viti con estremità di forma 02





							Cuscinetto	radiale rigido a sfere	Anello di	sicurezza
Versione ¹⁾	Foro di c	entraggio	Foro es	agonale	Filettat	ura				
	Z	tz	S	ts	G	t _G				
							Sigla	Numero di identificazione	Sigla	Numero di identificazione
100	М3	9,0	-	_	М3	5	6200.2RS	R3414 049 00	8x0,8	R3410 737 00
120	M3	9,0	4	4	M4	6	6201.2RS	R3414 042 00	10x1	R3410 745 00
150	M4	10,0	4	4	M5	8	6202.2RS	R3414 074 00	12x1	R3410 712 00
170	M5	12,5	4	4	M6	9	6203.2RS	R3414 050 00	15x1	R3410 748 00
200	M6	16,0	5	5	M6	9	6204.2RS	R3414 038 00	18x1,2	R3410 723 00
250	M8	19,0	6	6	M8	12	6205.2RS	R3414 063 00	22x1,2	R3410 714 00
300	M10	22,0	10	10	M10	15	6206.2RS	R3414 051 00	28x1,5	R3410 752 00
350	M12	28,0	10	10	M12	18	6207.2RS	R3414 075 00	32x1,5	R3410 753 00
500	M16	36,0	17	17	M16	24	6210.2RS	R3414 077 00	48x1,75	R3410 718 00
600	M20	42,0	19	19	M20	30	6212.2RS	R3414 078 00	58x2	R3410 728 00

Forma K1, K1A

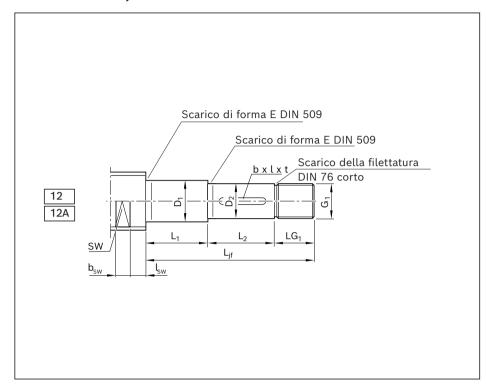
Indicazioni per l'ordine:

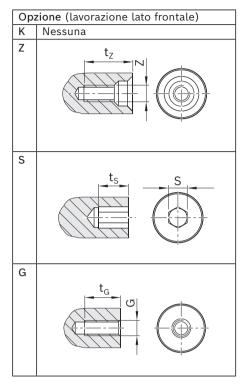
BASA 20x5R x 3 | SEM-E-S - 4 | 00 | 1 | 2 | T7 | R | K1AZ120 | 41Z120 | 1250 | 0 | 1

-	. 1	١.		l, ,											
Forma	Versione ¹⁾	Gra	ndezza	(mm)											
											Foro di c	entraggio	Foro esa	agonale	
		d ₀	P	L _{if}	D ₁	L ₁	D_2	L_2	G ₁	L _{G1}	Z	tz	S	ts	
				,	h11		h6								
K1/K1A	100	16	5/10/16	40	12,5	10	10	18	M10x1	12	M3	9,0	4	4	
	120	20	5/10/20/40	45	16,0	10	12	23	M12x1	12	M4	10,0	4	4	
	170	25	5/10/25	55	21,0	10	17	23	M17x1	22	M6	16,0	5	5	
	200	32	5/10/20/32/64	58	27,5	10	20	26	M20x1	22	M6	16,0	5	5	
	250	40	5/10/12/16/20/25/30/40	90	33,5	10	25	54	M25x1,5	26	M10	22,0	8	8	
	300	40	5/10/12/16/20/25/30/40	61	33,5	10	30	25	M30x1,5	26	M10	22,0	10	10	
	301	50	5/10/12/16/20/25/30/40	90	43,0	10	30	54	M30x1,5	26	M10	22,0	10	10	
	350	50	5	70	45,0	10	35	32	M35x1,5	28	M12	28,0	12	12	
	400	63	10/20/40	82	56,0	10	40	44	M40x1,5	28	M16	36,0	12	12	
	500	80	10/20/40	94	66,5	10	50	52	M50x1,5	32	M16	36,0	19	19	

¹⁾ Con la versione è possibile stabilire in modo univoco la correlazione tra le estremità delle viti e i gruppi cuscinetti di vincolo.

Cuscinetti di vincolo per viti con estremità di forma K1, K1A



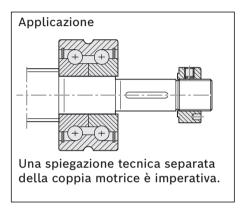


						Cuscinetto di	vincolo assiale			Ghiera a tac	che
Versione ¹⁾	Parte fil	lettata	Apert	ura ch	iave	LGF		LGN		NMZ/NMA	
	G	t _g	SW	b _{SW}	l_{SW}	Sigle	Numero di identificazione	Sigla	Numero di identificazione	- 0	Numero di identificazione
100	M4	6	11	10	8,5	-	_	LGN-B-1034	R3414 003 06	NMZ 10x1	R3446 002 04
120	M5	8	15	10	8,5	LGF-B-1255	R3414 009 06	LGN-B-1242	R3414 004 06	NMZ 12x1	R3446 003 04
170	M6	9	19	10	10,5	LGF-B-1762	R3414 010 06	LGN-B-1747	R3414 005 06	NMA 17x1	R3446 014 04
200	M8	12	24	15	10,5	LGF-B-2068	R3414 001 06	LGN-B-2052	R3414 006 06	NMA 20x1	R3446 015 04
250	M10	15	30	15	12,5	LGF-C-2575	R3414 015 06	LGN-C-2557	R3414 014 06	NMA 25x1,5	R3446 011 04
300	M12	18	30	15	12,5	LGF-B-3080	R3414 011 06	LGN-B-3062	R3414 007 06	NMA 30x1,5	R3446 016 04
301	M12	18	41	22	15,5	LGF-C-3080	R3414 027 06	LGN-C-3062	R3414 023 06	NMA 30x1,5	R3446 016 04
350	M12	18	41	22	15,5	LGF-B-3590	R3414 026 06	LGN-B-3572	R3414 022 06	NMA 35x1,5	R3446 012 04
400	M16	24	50	27	16,5	LGF-B-40115	R3414 028 06	LGN-A-4090	R3414 024 06	NMA 40x1,5	R3446 018 04
500	M20	30	60	27	18,5	LGF-A-50140	R3414 029 06	LGN-A-50110	R3414 025 06	NMA 50x1,5	R3446 019 04

Forma 12, 12A

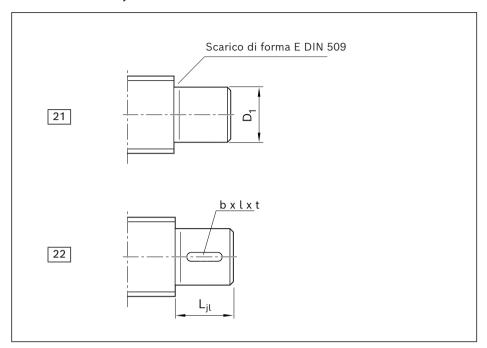
Indicazioni per l'ordine:

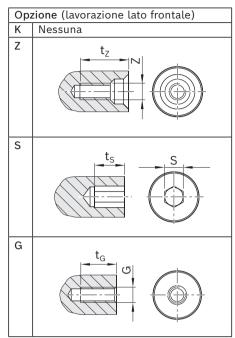
BASA 20x5R x 3 | SEM-E-S - 4 | 00 | 1 | 2 | T7 | R | 12AZ120 | 41Z120 | 1250 | 0 | 1


Forma	Versione ¹⁾	Gra	andezza	(mm	1)													
											Cava	per o	hiavetta	Foro	di	Foro esa	agonale	
											seco	ndo D	IN 6885	centr	aggio			
		d ₀	P	L _{jf}	D ₁	L ₁	D ₂	L_2	G ₁	LG ₁	b	l	t	Z	tz	S	ts	
					h6		h7				P9							
12/12A	100	16	5/10/16	48	10	18	8	20	M6x0,5	10	2	14	1,2	-	-	_	_	
	120	20	5/10/20/40	60	12	23	10	25	M10x1	12	3	20	1,8	МЗ	9,0	4	4	
	170	25	5/10/25	75	17	23	15	30	M15x1	22	5	25	3,0	M5	12,5	4	4	
	200	32	5/10/20/32/64	88	20	26	18	40	M17x1	22	6	28	3,5	M6	16,0	5	5	
	250	40	5/10/12/16/20/25/30/40	126	25	54	22	50	M20x1	22	6	36	3,5	M6	16,0	5	5	
	300	40	5/10/12/16/20/25/30/40	101	30	25	28	50	M25x1,5	26	8	36	4,0	M10	22,0	8	8	
	301	50	5/10/12/16/20/25/30/40	130	30	54	28	50	M25x1,5	26	8	36	4,0	M10	22,0	8	8	
	350	50	5	118	35	32	32	60	M30x1,5	26	10	40	5,0	M10	22,0	10	10	
	400	63	10/20/40	132	40	44	38	60	M35x1,5	28	10	40	5,0	M12	28,0	12	12	
	500	80	10/20/40	160	50	52	48	80	M40x1,5	28	14	63	5,5	M16	36,0	12	12	

¹⁾ Con la versione è possibile stabilire in modo univoco la correlazione tra le estremità delle viti e i gruppi cuscinetti di vincolo.

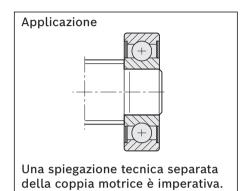
Cuscinetti di vincolo per viti con estremità di forma 12, 12A





						Cuscinetto di	i vincolo assiale			Ghiera a tac	che
Versione ¹⁾	Parte		Apert	tura cl	hiave	LGF		LGN		NMZ/NMA	
	filettata										
	G	t_G	SW	b_{SW}	I_{SW}	Numero di			Numero di		Numero di
						Sigla	identificazione	Sigla	identificazione	Sigla	identificazione
100	-	-	11	10	8,5	_	_	LGN-B-1034	R3414 003 06	NMZ6x0,5	R3446 001 04
120	M4	6	15	10	8,5	LGF-B-1255	R3414 009 06	LGN-B-1242	R3414 004 06	NMZ10x1	R3446 002 04
170	M6	9	19	10	10,5	LGF-B-1762	R3414 010 06	LGN-B-1747	R3414 005 06	NMA15x1	R3446 020 04
200	M6	9	24	15	10,5	LGF-B-2068	R3414 001 06	LGN-B-2052	R3414 006 06	NMA17x1	R3446 014 04
250	M8	12	30	15	12,5	LGF-B-2575	R3414 015 06	LGN-C-2557	R3414 014 06	NMA20x1	R3446 015 04
300	M10	15	30	15	12,5	LGF-B-3080	R3414 011 06	LGN-B-3062	R3414 007 06	NMA25x1,5	R3446 011 04
301	M10	15	41	22	15,5	LGF-C-3080	R3414 027 06	LGN-C-3062	R3414 023 06	NMA25x1,5	R3446 011 04
350	M12	18	41	22	15,5	LGF-B-3590	R3414 026 06	LGN-B-3572	R3414 022 06	NMA30x1,5	R3446 016 04
400	M12	18	50	27	16,5	LGF-B-40115	R3414 028 06	LGN-A-4090	R3414 024 06	NMA35x1,5	R3446 012 04
500	M16	24	60	27	18,5	LGF-A-50140	R3414 029 06	LGN-A-50110	R3414 025 06	NMA40x1,5	R3446 018 04

Forma 21, 22

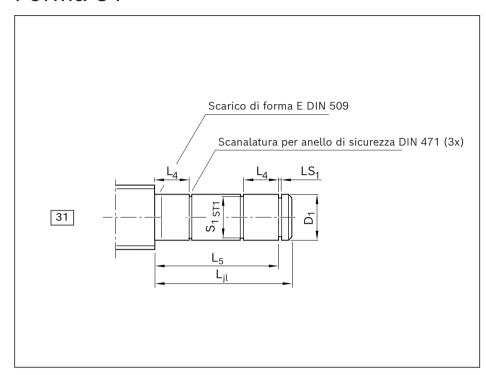

Indicazioni per l'ordine:

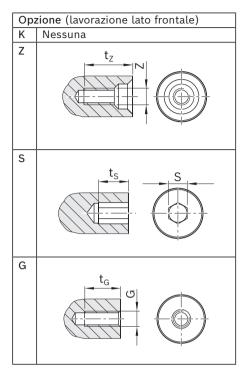
BASA | 20x5R x 3 | SEM-E-S - 4 | 00 | 1 | 2 | T7 | R | 21Z120 | 82Z120 | 1250 | 0 | 1

Forma	Versione ¹⁾	Gra	ndezza	(mm)							
Torma	Versione	""	1146224	()		Cava per chia	vetta secono	lo DIN 6885	Foro di cer	ntraggio	
		d ₀	P	L _{jl}	D_1	b.	l	t	G	t _z	
				,	j6	P9					
21	050	8	1/2/2,5/5	5	5	-	_	-	-	_	
	060	12	2/5/10	6	6	-	-	_	_	_	
	100	16	5/10/16	9	10	-	-	_	M3	9,0	
	120	20	5/10/20/40	10	12	-	-	_	M4	10,0	
	150	20	5/10/20/40	11	15	-	_	_	M5	12,5	
	170	25	5/10/25	12	17	-	-	_	M6	16,0	
	200	32	5/10/20/32/64	14	20	-	-	_	M6	16,0	
	250	32	5/10/20/32/64	15	25	-	-	_	M10	22,0	
	300	40	5/10/12/16/20/25/30/40	16	30	-	-	_	M10	22,0	
	350	50	5/10/12/16/20/25/30/40	17	35	-	-	-	M12	28,0	
	500	63	10/20/40	20	50	-	-	_	M16	36,0	
	600	80	10/20/40	22	60	-	-	_	M20	42,0	
22	100	16	5/10/16	11	10	3	6	1,8	M3	9,0	
	120	20	5/10/20/40	13	12	4	8	2,5	M4	10,0	
	150	20	5/10/20/40	15	15	5	10	3,0	M5	12,5	
	170	25	5/10/25	15	17	5	10	3,0	M6	16,0	
	200	32	5/10/20/32/64	24	20	6	14	3,5	M6	16,0	
	250		5/10/20/32/64	28	25	8	18	4,0	M10	22,0	
	300	40	5/10/12/16/20/25/30/40	28	30	8	18	4,0	M10	22,0	
	350	50	5/10/12/16/20/25/30/40	32	35	10	22	5,0	M12	28,0	
	500	63	10/20/40	46	50	14	36	5,5		36,0	
	600	80	10/20/40	60	60	18	50	7,0	M20	42,0	

¹⁾ Con la versione è possibile stabilire in modo univoco la correlazione tra le estremità delle viti e i gruppi cuscinetti di vincolo.

Cuscinetti di vincolo per viti con estremità di forma 21



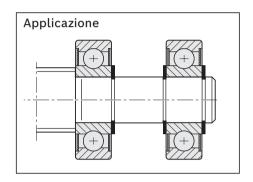


	1					o (Cuscinetto radiale rigido a sfere secondo
Versione ¹⁾	Foro esage	onale	Filettatura	a	DIN 625)	
	S	ts	G	t _Z		
					Sigla	Numero di identificazione
050	_	_	_	_	625.2RS	R3414 048 00
060	_	-	-	_	626.2RS	R3414 043 00
100	4	4	M4	6	6200.2RS	R3414 049 00
120	4	4	M5	8	6201.2RS	R3414 042 00
150	4	4	M6	9	6202.2RS	R3414 074 00
170	5	5	M6	9	6203.2RS	R3414 050 00
200	5	5	M8	12	6204.2RS	R3414 038 00
250	8	8	M10	15	6205.2RS	R3414 063 00
300	10	10	M12	18	6206.2RS	R3414 051 00
350	12	12	M12	18	6207.2RS	R3414 075 00
500	19	19	M20	30	6210.2RS	R3414 077 00
600	19	19	M24	36	6212.2RS	R3414 078 00
100	4	4	M4	6	-	-
120	4	4	M5	8	-	-
150	4	4	M6	9	-	-
170	5	5	M6	9	-	-
200	5	5	M8	12	-	-
250	8	8	M10	15	-	-
300	10	10	M12	18	-	-
350	12	12	M12	18	-	-
500	19	19	M20	30	-	-
600	19	19	M24	36	-	-

²⁾ Fornitura: 1 cuscinetto, 2 anelli di sicurezza

Forma 31

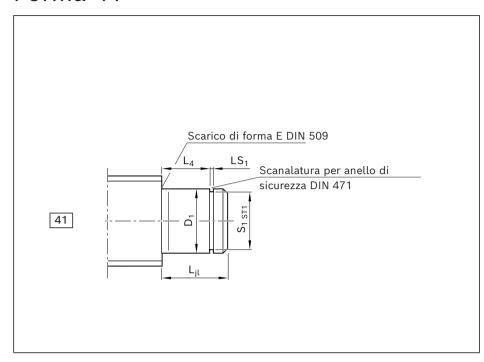
Indicazioni per l'ordine:

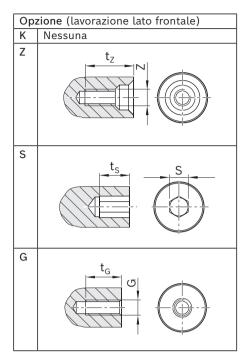

BASA | 20x5R x 3 | SEM-E-S - 4 | 00 | 1 | 2 | T7 | R | 31Z120 | 82Z120 | 1250 | 0 | 1

Forma	Versione ¹⁾	C ***	-d	(mm)									
FOIIIa	versione.	Grandezza		(111111)			Foro di centraggio						
		d ₀	P	L _{jl}	D ₁	L ₄	L ₅	S ₁	ST1	LS ₁ H13	z	t _Z	
31	050	8	1/2/2,5/5	22	j6 5	5	20	4,8	h10	0,70		_	
	060	12	2/5/10	26	6	6	24	5,7	h10	0,80	-	_	
	100	16	5/10/16	39	10	9	36	9,6	h10	1,10	М3	9,0	
	120	20	5/10/20/40	43	12	10	40	11,5	h11	1,10	M4	10,0	
	150	20	5/10/20/40	47	15	11	44	14,3	h11	1,10	M5	12,5	
	170	25	5/10/25	51	17	12	48	16,2	h11	1,10	M6	16,0	
	200	32	5/10/20/32/64	60	20	14	56	19,0	h11	1,30	M6	16,0	
	250	32	5/10/20/32/64	64	25	15	60	23,9	h12	1,30	M10	22,0	
	300	40	5/10/12/16/20/25/30/40	68	30	16	64	28,6	h12	1,60	M10	22,0	
	350	50	5/10/12/16/20/25/30/40	73	35	17	68	33,0	h12	1,60	M12	28,0	
	500	63	10/20/40	87	50	20	80	47,0	h12	2,15	M16	36,0	
	600	80	10/20/40	95	60	22	88	57,0	h12	2,15	M20	42,0	

¹⁾ Con la versione è possibile stabilire in modo univoco la correlazione tra le estremità delle viti e i gruppi cuscinetti di vincolo. Nota: la forma 31 con cuscinetto di vincolo radiale doppio aumenta la velocità critica n_{cr}. Vedere "Velocità critica ncr" a pagina 174.

Cuscinetti di vincolo per viti con estremità di forma 31



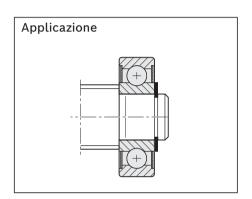


Versione ¹⁾	Foro esago	onale			Gruppo unità supporto cuscinetti di vincolo	cuscinetti di vincolo	
	S	ts	G	t _g	SEC-L	SES-L	LAD ²⁾
					Numero di identificazione	Numero di identificazione	Numero di identificazione
050	-	-	-	-	-	-	R1590 605 00
060	-	_	-	_	_	_	R1590 606 00
100	4	4	M4	6	_	_	R1590 610 00
120	4	4	M5	8	_	_	R1590 612 00
150	4	4	M6	9	R1594 615 00	R1595 615 00	R1590 615 00
170	5	5	M6	9	_	R1595 617 00	R1590 617 00
200	5	5	M8	12	R1594 620 00	R1595 620 00	R1590 620 00
250	8	8	M10	15	-	_	R1590 625 00
300	10	10	M12	18	R1594 630 00	R1595 630 00	R1590 630 00
350	12	12	M12	18	_	_	R1590 635 00
500	19	19	M20	30	_	_	R1590 650 00
600	19	19	M24	36	_	-	R1590 660 00

²⁾ Fornitura per gruppo LAD 1 cuscinetto, 2 anelli di sicurezza. Per l'applicazione su forma 31: sono necessari due gruppi.

Forma 41

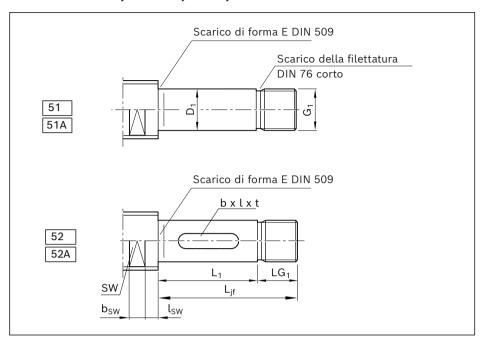
Dati per l'ordinazione:

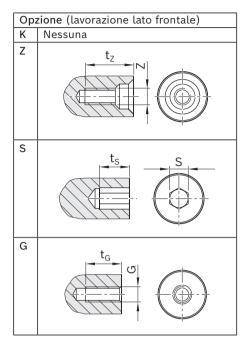

BASA | 20x5R x 3 | SEM-E-S - 4 | 00 | 1 | 2 | T7 | R | 41Z120 | 82Z120 | 1250 | 0 | 1

_	l			1, ,									
Forma Versione		Grandezza		(mm)									
		 d ₀ P					Foro di centraggio						
				L _{jl}	D_1	L ₄	S ₁	ST1	LS ₁	Z	tz		
					j6				H13				
41	050	8	1/2/2,5/5	7	5	5	4,8	h10	0,70	-	-		
	060	12	2/5/10	8	6	6	5,7	h10	0,80	-	_		
	100	16	5/10/16	12	10	9	9,6	h10	1,10	M3	9,0		
	120	20	5/10/20/40	13	12	10	11,5	h11	1,10	M4	10,0		
	150	20	5/10/20/40	14	15	11	14,3	h11	1,10	M5	12,5		
	151	20	5/10/20/40	14	15	9	14,3	h11	1,10	M5	12,5		
	170	25	5/10/25	15	17	12	16,2	h11	1,10	M6	16,0		
	200	32	5/10/20/32/64	18	20	14	19,0	h11	1,30	M6	16,0		
	202	25	5/10/25	19	20	14	19,0	h11	1,30	M6	16,0		
	250	32	5/10/20/32/64	19	25	15	23,9	h12	1,30	M10	22,0		
	252	32	5/10/20/32/64	20	25	15	23,9	h12	1,30	M10	22,0		
	300	40	5/10/12/16/20/25/30/40	20	30	16	28,6	h12	1,60	M10	22,0		
	350	50	5/10/12/16/20/25/30/40	22	35	17	33,0	h12	1,60	M12	28,0		
	500	63	10/20/40	27	50	20	47,0	h12	2,15	M16	36,0		
	600	80	10/20/40	29	60	22	57,0	h12	2,15	M20	42,0		

¹⁾ Con la versione è possibile stabilire in modo univoco la correlazione tra le estremità delle viti e i gruppi cuscinetti di vincolo.

Cuscinetti di vincolo per viti con estremità di forma 41



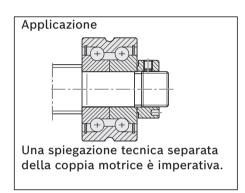


					Gruppo	
Versione ¹⁾	Foro esagona	ale	Filettatura		cuscinetti di vincolo	unità supporto cuscinetti di vincolo
	S	ts	G		LAD ²⁾	SEB-L
					Numero di identificazione	Numero di identificazione
050		_	<u> </u>		R1590 605 00	R1591 605 00
060	_	_	_		R1590 606 00	R1591 606 20
100	4	4	M4	6	R1590 610 00	R1591 610 20
 120	4	4	M5	8	R1590 612 00	R1591 612 20
150	4	4	M6	9	R1590 615 00	-
151	4	4	M6	9	_	-
 170	5	5	M6	9	R1590 617 00	R1591 617 20
200	5			12	R1590 620 00	R1591 620 20
202	5			12		-
250	8	8	M10	15	R1590 625 00	-
252	8	8	M10	15	_	-
 300	10	10	M12	18	R1590 630 00	R1591 630 20
350	12	12	M12	18	R1590 635 00	R1591 635 20
500	19	19	M20	30	R1590 650 00	R1591 650 20
600	19	19	M24	36	R1590 660 00	R1591 660 20

²⁾ Fornitura: 1 cuscinetto, 2 anelli di sicurezza

Forma 51, 51A, 52, 52A

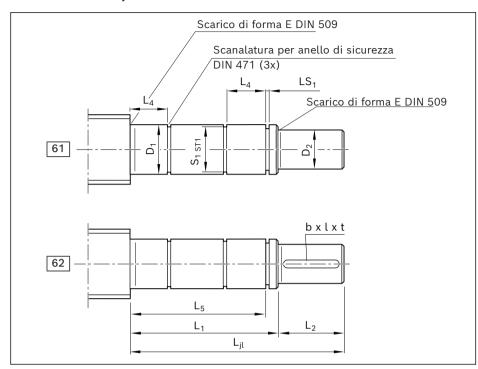
Indicazioni per l'ordine:

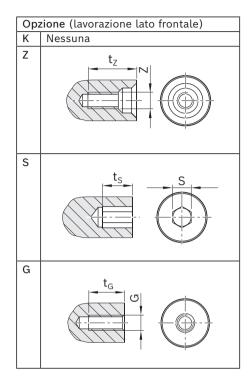

BASA | 20x5R x 3 | SEM-E-S - 4 | 00 | 1 | 2 | T7 | R | 52AZ120 | 82Z120 | 1250 | 0 | 1

Forma	Versione ¹⁾	Cro	ndezza	(mm)								
FOITIIA	versione	Gra	IIUEZZa	(111111)					Cava per chiave	atta second	o DIN 6885	
		d ₀	l p	L _{jf}	D_1	La	G ₁	LG₁	b	ı İ	t DIN 0005	
		40	'	Ljt	h6	L1	U1	LOI	P9	,	·	
					110							
51/51A	060	12	2/5/10	24	6	14	M6x0,5	10	_	_	-	
	100	16	5/10/16	30	10	18	M10x1	12	-	_	_	
	120	20	5/10/20/40	35	12	23	M12x1	12	-	_	_	
	170	25	5/10/25	45	17	23	M17x1	22	-	_	_	
	200	32	5/10/20/32/64	48	20	26	M20x1	22	-	_	_	
	209	32	5/10/20/32/64	108	20	77	M20x1	31	-	_	_	
	250	40	5/10/12/16/20/25/30/40	80	25	54	M25x1,5	26	-	_	_	
	300	40	5/10/12/16/20/25/30/40	51	30	25	M30x1,5	26	-	_	_	
	301	50	5/10/12/16/20/25/30/40	80	30	54	M30x1,5	26	-	_	_	
	309	40	5/10/12/16/20/25/30/40	117	30	83	M30x1,5	34	-	_	_	
	350	50	5	60	35	32	M35x1,5	28	-	_	_	
	359	50	5/10/20/30/40	145	35	109	M35x1,5	36	-	_	-	
	400	63	10/20/40	72	40	44	M40x1,5	28	-	_	_	
	409	63	10/20/40	183	40	147	M40x1,5	36	-	_	-	
	500	80	10/20/40	84	50	52	M50x1,5	32	-	_	-	
52/52A	080	12	2/5/10	30	8	20	M8x0,75	10	2	14	1,2	
	100	16	5/10/16	37	10	25	M10x1	12	3	20	1,8	
	120	20	5/10/20/40	37	12	25	M12x1	12	4	20	2,5	
	170	25	5/10/25	52	17	30	M17x1	22	5	25	3,0	
	200	1	5/10/20/32/64	62	20	40	M20x1	22	6	28	3,5	
	250	40	5/10/12/16/20/25/30/40	76	25	50	M25x1,5	26	8	36	4,0	
	300	40	5/10/12/16/20/25/30/40	76	30	50	M30x1,5	26	8	36	4,0	
	350	50	5/10/12/16/20/25/40	78	35	50	M35x1,5	28	10	40	5,0	
	400	63	., ., .	88	40	60	M40x1,5	28	12	50	5,0	_
	500	80	10/20/40	112	50	80	M50x1,5	32	14	63	5,5	

¹⁾ Con la versione è possibile stabilire in modo univoco la correlazione tra le estremità delle viti e i gruppi cuscinetti di vincolo.

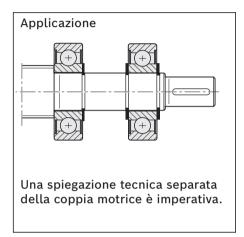
Cuscinetti di vincolo per viti con estremità di forma 51, 51A





Marrie 4VI	Farr II		Es.:		F.,	- t I		h.,		Gruppo unità suppo		
Versione ¹⁾	Foro di ce				1			1				1
	Z	tz	S	ts	G	tg	SW	b _{SW}	I _{SW}		LAF	LAN
										Numero di	Numero di	Numero di
										identificazione	identificazione	identificazione
060	-				-	_	9	10			_	R1590 106 00
	M3	9	4		M4	6	11	10		R1591 110 20	_	R1590 110 00
	M4	10	4		M5	8	15	10	- , -	R1591 112 20	R1590 012 00	R1590 112 00
	M6	16	5	5	M6	9	19			R1591 117 30	R1590 017 30	R1590 117 30
	M6	16	5	5	M8	12	24		-	R1591 120 30	R1590 020 30	R1590 120 30
209	M6	16	5	5	M8	12	24	15	10,5			_
250	M10	22	8	8	M10	15	30	15	12,5	R1591 225 30	R1590 325 30	R1590 225 30
 300	M10	22	10	10	M12	18	30	15	12,5	R1591 130 30	R1590 030 30	R1590 130 30
301	M10	22	10	10	M12	18	41	22	15,5	R1591 230 30	R1590 330 30	R1590 230 30
309	M10	22	10	10	M12	18	30	15	12,5	_	_	_
350	M12	28	12	12	M12	18	41	22	15,5	R1591 135 30	R1590 035 30	R1590 135 30
359	M12	28	12	12	M12	18	41	22	15,5	_	_	
400	M16	36	12	12	M16	24	50	27	16,5	R1591 140 30	R1590 040 30	R1590 140 30
409	M16	36	12	12	M16	24	50	27	16,5	-	_	_
 500	M16	36	19	19	M20	30	60	27	18,5	R1591 150 30	R1590 050 30	R1590 150 30
080	МЗ	9	-		МЗ	5	9	10	8,5	_	_	_
 100	МЗ	9	4	4	M4	6	11	10	8,5	-	_	_
120	M4	10	4	4	M5	8	15	10	8,5	-	_	_
170	M6	16	5	5	M6	9	19	10	10,5	_	_	_
200	M6	16	5	5	M8	12	24	15	10,5	_	_	_
250	M10	22	8	8	M10	15	30		12,5		_	_
300	M10	22	10	10	M12	18	30	15	12,5	-	_	_
350	M12	28	12	12	M12	18	41		15,5	_	_	_
400	M16	36	12	12	M16	24	50	27	16,5	_	_	_
500	M16	36	19	19	M20	30	60	27	18,5	-	-	_

Forma 61, 62

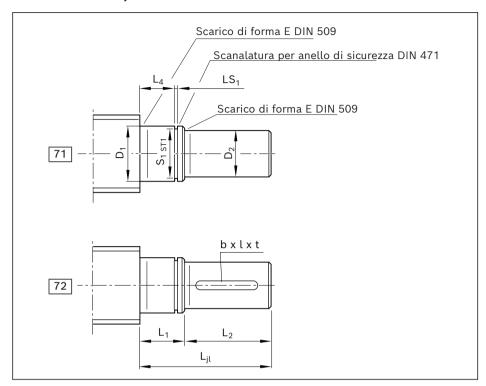

Indicazioni per l'ordine:

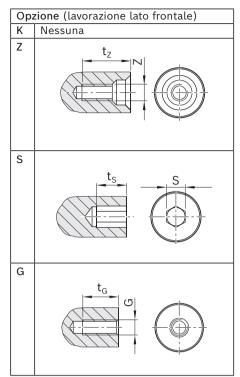
BASA | 20x5R x 3 | SEM-E-S - 4 | 00 | 1 | 2 | T7 | R | 62Z120 | 51Z120 | 1250 | 0 | 1

-	l., . 1)													
Forma	Versione ¹⁾	Gra	ındezza	(mm)										
			1							ı				
		d ₀	P	Ljl	D_1	L ₁	D_2	L ₂	L ₄	L ₅	S ₁	ST1	LS ₁	
					j6		h7						H13	
61	050	8	1/2/2,5/5	34	5	22	4	12	5	20		h10	0,70	
	060	12	2/5/10	42	6	26	5	16	6	24	5,7	h10	0,80	
	100	16	5/10/16	59	10	39	8	20	9	36	9,6	h10	1,10	
	120	20	5/10/20/40	68	12	43	10	25	10	40	11,5	h11	1,10	
	150	20	5/10/20/40	72	15	47	12	25	11	44	14,3	h11	1,10	
	170	25	5/10/25	81	17	51	15	30	12	48	16,2	h11	1,10	
	200	32	5/10/20/32/64	100	20	60	18	40	14	56	19,0	h11	1,30	
	250	32	5/10/20/32/64	114	25	64	22	50	15	60	23,9	h12	1,30	
	300	40	5/10/12/16/20/25/30/40	118	30	68	28	50	16	64	28,6	h12	1,60	
	350	50	5/10/12/16/20/25/30/40	133	35	73	32	60	17	68	33,0	h12	1,60	
	500	63	10/20/40	167	50	87	48	80	20	80	47,0	h12	2,15	
	600	80	10/20/40	175	60	95	58	80	22	88	57,0	h12	2,15	
62	100	16	5/10/16	59	10	39	8	20	9	36	9,6	h10	1,10	
	120	20	5/10/20/40	68	12	43	10	25	10	40	11,5	h11	1,10	
	150	20	5/10/20/40	72	15	47	12	25	11	44	14,3	h11	1,10	
	170	25	5/10/25	81	17	51	15	30	12	48	16,2	h11	1,10	
	200	32	5/10/20/32/64	100	20	60	18	40	14	56	19,0	h11	1,30	
	250	32	5/10/20/32/64	114	25	64	22	50	15	60	23,9	h12	1,30	
	300	40	5/10/12/16/20/25/30/40	118	30	68	28	50	16	64	28,6	h12	1,60	
	350	50	5/10/12/16/20/25/30/40	133	35	73	32	60	17	68	33,0	h12	1,60	
	500	63		167	50	87	48	80	20	80	47,0		2,15	
	600	80	10/20/40	175	60	95	58	80	22	88	57,0	h12	2,15	

¹⁾ Con la versione è possibile stabilire in modo univoco la correlazione tra le estremità delle viti e i gruppi cuscinetti di vincolo.

Cuscinetti di vincolo per viti con estremità di forma 61, 62

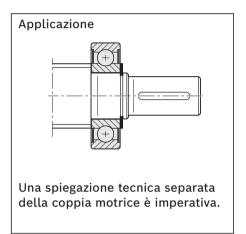




										Gruppo
Versione ¹⁾	Cava per chi	avetta seco	ndo DIN 6885	Foro di c	entraggio	Foro esag	gonale	Filettatuı	ra	Cuscinetto
	b	ι	t	Z	tz	S	ts	G	tg	LAD ²⁾
	P9									Numero di identificazione
050	-	-	_	-	_	-	-	-	_	R1590 605 00
060	_	-	_	_	_	_	_	_	_	R1590 606 00
100	-	-	_	М3	9,0	_	_	M3	5	R1590 610 00
120	-	-	_	M3	9,0	4	4	M4	6	R1590 612 00
150	_	-	_	M4	10,0	4	4	M5	8	R1590 615 00
170	-	-	_	M5	12,5	4	4	M6	9	R1590 617 00
200	_	-	_	M6	16,0	5	5	M6	9	R1590 620 00
250	_	-	_	M8	19,0	6	6	M8	12	R1590 625 00
300	-	-	_	M10	22,0	10	10	M10	15	R1590 630 00
350	_	-	_	M12	28,0	10	10	M12	18	R1590 635 00
500	_	-	_	M16	36,0	17	17	M16	24	R1590 650 00
600	-	-	_	M20	42,0	19	19	M20	42	R1590 660 00
100	2	14	1,2	M3	9,0	-	_	M3	5	R1590 610 00
120	3	20	1,8	M3	9,0	4	4	M4	6	R1590 612 00
150	4	20	2,5	M4	10,0	4	4	M5	8	R1590 615 00
170	5	25	3,0	M5	12,5	4	4	M6	9	R1590 617 00
200	6	28	3,5	M6	16,0	5	5	M6	9	R1590 620 00
250	6	36	3,5	M8	19,0	6	6	M8	12	R1590 625 00
300	8	36	4,0	M10	22,0	10	10	M10	15	R1590 630 00
350	10	40	5,0	M12	28,0	10	10	M12	18	R1590 635 00
500	14	63	5,5	M16	36,0	17	17	M16	24	R1590 650 00
600	16	63	6,0	M20	42,0	19	19	M20	42	R1590 660 00

²⁾ Fornitura per gruppo: 1 cuscinetto, 2 anelli di sicurezza. Per l'applicazione su forma 61-62: sono necessari due gruppi.

Forma 71, 72

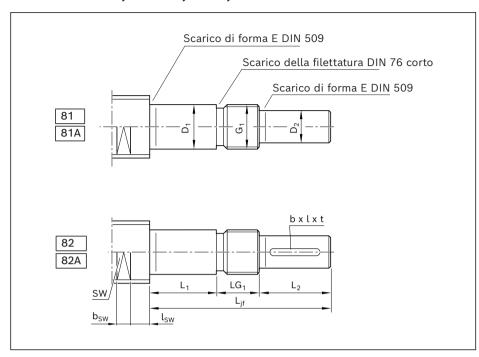

Indicazioni per l'ordine:

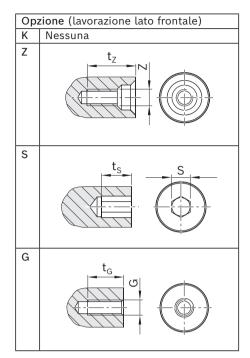
BASA | 20x5R x 3 | SEM-E-S - 4 | 00 | 1 | 2 | T7 | R | 72Z120 | 51Z120 | 1250 | 0 | 1

Forma	Versione ¹⁾	Gra	ndezza	(mm)								ı	
		d ₀	P	Ljt	D ₁	L ₁	D ₂	L ₂	L ₄	S ₁	ST1	LS ₁	
71	050	8	1/2/2,5/5	19	5	7	4	12	5	4.8	h10	0,70	
	060	12	2/5/10	24	6	8	5	16	6	5,7		0,80	
	100	16	5/10/16	32	10	12	8	20	9	9,6	h10	1,10	
	120	20	5/10/20/40	38	12	13	10	25	10	11,5	h11	1,10	
	150	20	5/10/20/40	39	15	14	12	25	11	14,3	h11	1,10	
	170	25	5/10/25	45	17	15	15	30	12	16,2	h11	1,10	
	200	32	5/10/20/32/64	58	20	18	18	40	14	19,0	h11	1,30	
	250	32	5/10/20/32/64	69	25	19	22	50	15	23,9	h12	1,30	
	300	40	5/10/12/16/20/25/30/40	70	30	20	28	50	16	28,6	h12	1,60	
	350	50	5/10/12/16/20/25/30/40	82	35	22	32	60	17	33,0	h12	1,60	
	500	63	10/20/40	107	50	27	48	80	20	47,0	h12	2,15	
	600	80	10/20/40	109	60	29	58	80	22	57,0	h12	2,15	
72	100	16	5/10/16	32	10	12	8	20	9	9,6		1,10	
	120	20	5/10/20/40	38	12	13	10	25	10	11,5		1,10	
	150	20	5/10/20/40	39	15	14	12	25	11	14,3		1,10	
	170	25	5/10/25	45	17	15	15	30	12	16,2		1,10	
	200	32	5/10/20/32/64	58	20	18	18	40	14	19,0		1,30	
	250	32	5/10/20/32/64	69	25	19	22	50	15	23,9		1,30	
	300	40	5/10/12/16/20/25/30/40	70	30	20	28	50	16	28,6		1,60	
	350	50	5/10/12/16/20/25/30/40		35	22	32	60	17	33,0		1,60	
	500	63	10/20/40	107	50	27	48	80	20	47,0		2,15	
	600	80	10/20/40	109	60	29	58	80	22	57,0	h12	2,15	

¹⁾ Con la versione è possibile stabilire in modo univoco la correlazione tra le estremità delle viti e i gruppi cuscinetti di vincolo.

Cuscinetti di vincolo per viti con estremità di forma 71, 72





1	1									Gruppo
Versione ¹⁾	Cava per chi	avetta secono	do DIN 6885	Foro di c	entraggio		agonale	Filettatur		Cuscinetto
	b	ι	t	Z	t _Z	S	ts	G	t _G	LAD ²⁾
	P9									Numero di identificazione
050	-	-	-	_	_	_	-	_	_	R1590 605 00
060	-	-	-	_	_	_	-	_	_	R1590 606 00
100	_	-	_	M3	9,0	_	-	M3	5	R1590 610 00
120	-	-	_	M3	9,0	4	4	M4	6	R1590 612 00
150	-	-	-	M4	10,0	4	4	M5	8	R1590 615 00
170	-	-	_	M5	12,5	4	4	M6	9	R1590 617 00
200	-	-	_	M6	16,0	5	5	M6	9	R1590 620 00
250	-	-	_	M8	19,0	6	6	M8	12	R1590 625 00
300	-	_	_	M10	22,0	10	10	M10	15	R1590 630 00
350	-	_	_	M12	28,0	10	10	M12	18	R1590 635 00
500	-	_	_	M16	36,0	17	17	M16	24	R1590 650 00
600	-	-	_	M20	42,0	19	19	M20	30	R1590 660 00
100	2	14	1,2	M3	9,0	_	_	M3	5	R1590 610 00
120	3	20	1,8	M3	9,0	4	4	M4	6	R1590 612 00
150	4	20	2,5	M4	10,0	4	4	M5	8	R1590 615 00
170	5	25	3,0	M5	12,5	4	4	M6	9	R1590 617 00
200	6	28	3,5	M6	16,0	5	5	M6	9	R1590 620 00
250	6	36	3,5	M8	19,0	6	6	M8	12	R1590 625 00
300	8	36	4,0	M10	22,0	10	10	M10	15	R1590 630 00
350	10	40	5,0	M12	28,0	10	10	M12	18	R1590 635 00
500	14	63	5,5	M16	36,0	17	17	M16	24	R1590 650 00
600	16	63	6,0	M20	42,0	19	19	M20	30	R1590 660 00

²⁾ Contenuto della fornitura: 1 cuscinetto, 2 anelli di sicurezza.

Forma 81, 81A, 82, 82A

Dati per l'ordinazione:

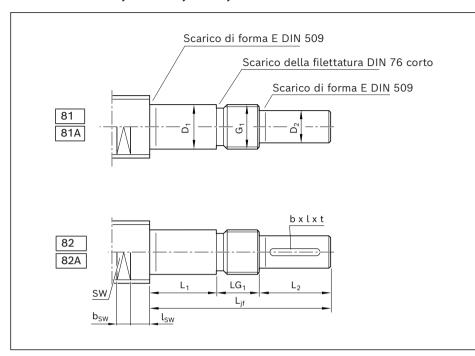
BASA | 20x5R x 3 | SEM-E-S - 4 | 00 | 1 | 2 | T7 | R | 81AZ120 | 41Z120 | 1250 | 0 | 1

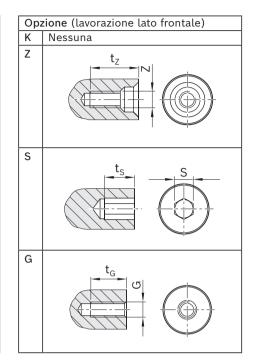
Forma	Versione ¹⁾	Gra	ndezza	(mm)												
											Foro di ce	ntraggio	Foro esa	gonale	Filetta	tura	
		d ₀	P	L _{jf}	D ₁ h6	L ₁	D ₂ h7	L ₂	G ₁	LG ₁		t _Z	S	t _S	G	t _g	
81/81A	060	12	2/5/10	40	6	14	5	16	M6x0,5	10	-	-	-	-	-	-	
	061	12	2/5/10	41	6	10	5	16	M6x0,5	15	_	_	-	-	-	-	
	100	16	5/10/16	50	10	18	8	20	M10x1	12	M3	9,0	_	_	МЗ	5	
	104	16	5/10/16	66	10	34	8	20	M10x1	12	M3	9,0	_	_	МЗ	5	
	120	20	5/10/20/40	60	12	23	10	25	M12x1	12	M3	9,0	4	4	M4	6	
	122	20	5/10/20/40	60	12	17	10	25	M12x1	18	M3	9,0	4	4	M4	6	
	123	20	5/10/20/40	60	12	23	10	25	M12x1	12	M3	9,0	4	4	M4	6	
	124	20	5/10/20/40	75	12	38	10	25	M12x1	12	M3	9,0	4	4	M4	6	
	151	25	5/10/25	60	15	19	12	25	M15x1	16	M4	10,0	4	4	M5	8	
	170	25	5/10/25	75	17	23	15	30	M17x1	22	M5	12,5	4	4	M6	9	
	173 ²⁾	25	5/10/25	75	17	23	15	30	M17x1	22	M5	12,5	4	4	M6	9	
	175	25	5/10/25	78	17	26	15	30	M17x1	22	M5	12,5	4	4	M6	9	
	200	32	5/10/20/32/64	88	20	26	18	40	M20x1	22	M6	16,0	5	5	M6	9	
	203	32	5/10/20/32/64	78	20	26	16	35	M20x1	17	M5	12,5	4	4	M6	9	
	204	32	5/10/20/32/64	80	20	25	18	40	M20x1	15	M6	16,0	5	5	M6	9	
	206	32	5/10/20/32/64	116	20	54	18	40	M20x1	22	M6	16,0	5	5	M6	9	
	250	40	10/12/16/20/25/30/40	130	25	54	22	50	M25x1,5	26	M8	19,0	6	6	M8	12	
	300	40	5/10/12/16/20/25/30/40	101	30	25	25	50	M30x1,5	26	M10	22,0	8	8	M10	15	
	301	40	5/10/12/16/20/25/30/40	93	30	25	25	50	M30x1,5	18	M10	22,0	8	8	M10	15	
	302	40	10/12/16/20/25/30/40	130	30	54	25	50	M30x1,5	26	M10	22,0	8	8	M10	15	
	305	40	10/12/16/20/25/30/40	121	30	53	25	50	M30x1,5	18	M10	22,0	8	8	M10	15	
	306	50	10/12/16/20/25/30/40	130	30	54	25	50	M30x1,5	26	M10	22,0	8	8	M10	15	
	309	40	5/10/12/16/20/40	150	30	74	25	50	M30x1,5	26	M10	22,0	8	8	M10	15	
	350	50	5	110	35	32	30	50	M35x1,5	28	M10	22,0	10	10	M12	18	
	351	50	5/10/12/16/20/25	158	35	82	30	50	M35x1,5	26	M10	22,0	10	10	M12	18	
	400	63	10/20/40	132	40	44	36	60	M40x1,5	28	M12	28,0	12	12	M12	18	
	401	63	10/20/40	178	40	90	36	60	M40x1,5	28	M12	28,0	12	12	M12	18	
	500	80	10/20/40	154	50	52	40	70	M50x1,5	32	M16	36,0	12	12	M16	24	
	501	80	10/20/40	208	50	106	40	70	M50x1,5	32	M16	36,0	12	12	M16	24	
	601	80	10/20/40	234	60	122	55	80	M60x2	32	M20	42,0	19	19	M20	30	

¹⁾ Con la versione è possibile stabilire in modo univoco la correlazione tra le estremità delle viti e i gruppi cuscinetti di vincolo.

²⁾ Versione 173 disponibile solo nella forma 81A/82A.

Cuscinetti di vincolo per viti con estremità di forma 81, 81A, 82, 82A





Versione ¹⁾	Apertu			per attacco mot Numero di ident		colo	Gruppo Numero di ide Cuscinetto	ntificazione		
	SW	b _{SW}	I _{SW}	SEC-F	SEB-F	SES-F	LAF	LAN	LAL	LAS
060	9	10	8,5	-	R1591 106 20	-	-	R1590 106 00	-	-
061	9	10	8,5	-	-	-	-	-	R1590 406 00	_
100	11	10	8,5	-	R1591 110 20	-	-	R1590 110 00	_	_
104	11	10	8,5	-	-	-	-	-	-	R159A 410 01
120	15	10	42,0	R1594 012 00	R1591 112 20	R1595 012 20	R1590 012 00	R1590 112 00	_	_
122	15	10	8,5	_	_	_	_	-	R1590 412 00	_
123	15	10	8,5	-	R1591 112 20	-	R1590 012 00	R1590 112 00	-	-
124	15	10	8,5	_	_	_	_	-	_	R159A 412 01
151	19	10	10,5	-	-	-	-	-	R1590 415 00	-
170	19	10	42,0	_	R1591 117 30	R1595 017 20	R1590 017 30	R1590 117 30	-	_
173 ²⁾	19	10	10,5	-	R1591 117 30	-	R1590 017 30	R1590 117 30	_	_
175	19	10	10,5	_	-	_	_	_	-	R159A 417 01 ³⁾
200	24	15	10,5	-	R1591 120 30	-	R1590 020 30	R1590 120 30	-	_
203	24	15	40,0	R1594 020 00	-	R1595 020 20	R1590 020 00	R1590 120 00	-	-
204	24	15	10,5	-	_	_	_	-	R1590 420 00	_
206	24	15	10,5	-	-	-	-	-	-	R159A 420 01
250	30	15	12,5	-	R1591 225 30	-	R1590 325 30	R1590 225 30	-	-
300	30	15	12,5	-	R1591 130 30	-	R1590 030 30	R1590 130 30	-	-
301	30	15	45,0	R1594 030 00	_	R1595 030 20	_	-	_	_
302	30	15	37,0	-	_	R1595 330 20	-	-	-	-
305	30	15	37,0	_	_	_	_	-	_	_
306	41	22	15,5	-	R1591 230 30	-	R1590 330 30	R1590 230 30	-	_
309	30	15	12,5	_	_	_	_	_	_	R159A 430 01
350	41	22	15,5	-	R1591 135 30	-	R1590 035 30	R1590 135 30	-	_
351	41	22	15,5	_	-	_	_	-	_	R159A 435 01
400	50	27	16,5	_	R1591 140 30	_	R1590 040 30	R1590 140 30	-	_
401	50	27	16,5	_	_	_	_	-	_	R159A 440 01
500	60	27	18,5	_	R1591 150 30	_	R1590 050 30	R1590 150 30	-	_
501	60	27	18,5	_	-	_	-	_	-	R159A 450 01
601	60	27	18,5	_	-	-	-	_	-	R159A 460 01

Forma 81, 81A, 82, 82A

Dati per l'ordinazione:

BASA | 20x5R x 3 | SEM-E-S - 4 | 00 | 1 | 2 | T7 | R | 82AZ120 | 41Z120 | 1250 | 0 | 1

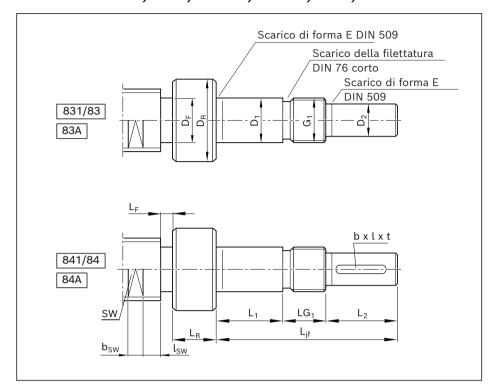
Forma	Versione ¹⁾	Grai	ndezza	(mm)													
											Cava p	er chia	vetta	Foro o	di	Foro esa	gonale	
											second	o DIN (6885	centra	aggio			
		d ₀	P	L_{jf}	D_1	L ₁	D_2	L_2	G ₁	LG ₁	b	ι	t	Z	tz	S	ts	
					h6		h7				P9							
82/82A	100	16	5/10/16	50	10	18	8	20	M10x1	12	2	14	1,2	МЗ	9,0	-	-	
	104	16	5/10/16	66	10	34	8	20	M10x1	12	2	14	1,2	МЗ	9,0	-	- [
	120	20	5/10/20/40	60	12	23	10	25	M12x1	12	3	20	1,8	МЗ	9,0	4	4	
	123	20	5/10/20/40	60	12	23	10	25	M12x1	12	3	20	1,8	МЗ	9,0	4	4	
	124	20	5/10/20/40	75	12	38	10	25	M12x1	12	3	20	1,8	МЗ	9,0	4	4	
	170	25	5/10/25	75	17	23	15	30	M17x1	22	5	25	3,0	M5	12,5	4	4	
	173 ²⁾	25	5/10/25	75	17	23	15	30	M17x1	22	5	25	3,0	M5	12,5	4	4	
	175	25	5/10/25	78	17	26	15	30	M17x1	22	5	25	3,0	M5	12,5	4	4	
	200	32	5/10/20/32/64	88	20	26	18	40	M20x1	22	6	28	3,5	M6	16,0	5	5	
	203	32	5/10/20/32/64	78	20	26	16	35	M20x1	17	5	28	3,0	M5	12,5	4	4	
	206	32	5/10/20/32/64	116	20	54	18	40	M20x1	22	6	36	3,5	M6	16,0	5	5	
	250	40	10/12/16/20/25/30/40	130	25	54	22	50	M25x1,5	26	6	36	3,5	M8	19,0	6	6	
	300	40	5/10/12/16/20/25/30/40	101	30	25	25	50	M30x1,5	26	8	36	4,0	M10	22,0	8	8	
	301	40	5/10/12/16/20/25/30/40	93	30	25	25	50	M30x1,5	18	8	36	4,0	M10	22,0	8	8	
	302	40	10/12/16/20/25/30/40	130	30	54	25	50	M30x1,5	26	8	36	4,0	M10	22,0	8	8	
	305	40	10/12/16/20/25/30/40	121	30	53	25	50	M30x1,5	18	8	36	4,0	M10	22,0	8	8	
	306	50	10/12/16/20/25/30/40	130	30	54	25	50	M30x1,5	26	8	36	4,0	M10	22,0	8	8	
	309	40	5/10/12/16/20/40	150	30	74	25	50	M30x1,5	26	8	36	4,0	M10	22,0	8	8	
	350	50	5	110	35	32	30	50	M35x1,5	28	8	36	4,0	M10	22,0	10	10	
	351	50	5/10/12/16/20/25	158	35	82	30	50	M35x1,5	26	8	36	4,0	M10	22,0	10	10	
	400	63	10/20/40	132	40	44	36	60	M40x1,5	28	10	40	5,0	M12	28,0	12	12	
	401	63	10/20/40	178	40	90	36	60	M40x1,5	28	10	40	5,0	M12	28,0	12	12	
	500	80	10/20/40	154	50	52	40	70	M50x1,5	32	12	50	5,0	M16	36,0	12	12	
	501	80	10/20/40	208	50	106	40	70	M50x1,5	32	12	50	5,0	M16	36,0	12	12	
	601	80	10/20/40	234	60	122	55	80	M60x2	32	16	63	6,0	M20	42,0	19	19	

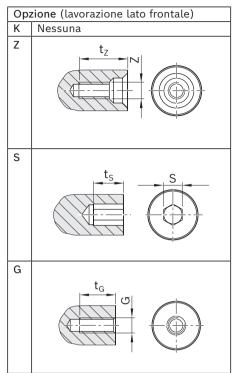
¹⁾ Con la versione è possibile stabilire in modo univoco la correlazione tra le estremità delle viti e i gruppi cuscinetti di vincolo.

²⁾ Versione 173 disponibile solo nella forma 81A/82A.

³⁾ Versione LAS 1+1 soltanto nella dimensione 25 versione 175

Cuscinetti di vincolo per viti con estremità di forma 81, 81A, 82, 82A



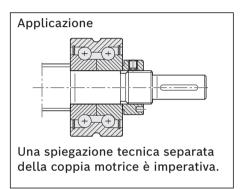


Ve	ersione ¹⁾	Parte filetta		Apert	ura ch	iave	Unità supporto	cuscinetti di vin tore	icolo	Gruppo Numero di iden	ntificazione	
		G	t _g	sw	b _{SW}	I _{SW}	Numero di iden			Cuscinetto	T. T. GUZIOTIE	
							SEC-F	SEB-F	SES-F	LAF	LAN	LAS
10	00	МЗ	5	11	10	8,5	_	R1591 110 20	_	_	R1590110 00	-
10	04	МЗ	5	11	10	8,5	-	_		<u> </u> -		R159A 410 01
12	20	M4	6	15	10	42,0	R1594 012 00	R1591 112 20	R1595 012 20	R1590 012 00	R1590 112 00	-
12	23	M4	6	15	10	8,5	_	R1591 112 20	-	R1590 012 00	R1590 112 00	_
12	24	M4	6	15	10	8,5	_	_	_	_	_	R159A 412 01
17	70	M6	9	19	10	42,0	_	R1591 117 30	R1595 017 20	R1590 017 30	R1590 117 30	
17	73 ²⁾	M6	9	19	10	10,5	_	R1591 117 30	_	R1590 017 30	R1590 117 30	<u> </u> -
17	75	M6	9	19	10	10,5	_	_	-	-	_	R159A 417 01 ³
20	00	M6	9	24	15	10,5		R1591 120 30	-	R1590 020 30	R1590 120 30	-
20	03	M6	9	24	15	40,0	R1594 020 00	_	R1595 020 20	R1590 020 00	R1590 120 00	-
20	06	M6	9	24	15	10,5	_	_	_	_	_	R159A 420 01
25	50	M8	12	30	15	12,5	_	R1591 225 30	-	R1590 325 30	R1590 225 30	-
30	00	M10	15	30	15	12,5	_	R1591 130 30		R1590 030 30	R1590 130 30	<u> -</u>
30	01	M10	15	30	15	45,0	R1594 030 00	_	R1595 030 20	-	_	-
30	02	M10	15	30	15	37,0	_	_	R1595 330 20	[-		
30	05	M10	15	30	15	37,0	_	_	_	-	_	<u> </u>
30	06	M10	15	41	22	15,5	_	R1591 230 30	-	R1590 330 30	R1590 230 30	-
30	09	M10	15	30	15	12,5	-	_	-	-	-	R159A 430 01
35	50	M12	18	41	22	15,5	_	R1591 135 30	-	R1590 035 30	R1590 135 30	-
35	51	M12	18	41	22	15,5	-	_	-	<u> </u> -	-	R159A 435 01
40	00	M12	18	50	27	16,5	_	R1591 140 30	-	R1590 040 30	R1590 140 30	-
40	01	M12	18	50	27	16,5	_	-	-	-	_	R159A 440 01
50	00	M16	24	60	27	18,5	-	R1591 150 30	-	R1590 050 30	R1590 150 30	-
50	01	M16	24	60	27	18,5	_	_	-	-	-	R159A 450 01
60	01	M20	30	60	27			_	_	<u> </u>	_	R159A 460 01

Forma 831, 83, 83A, 841, 84, 84A

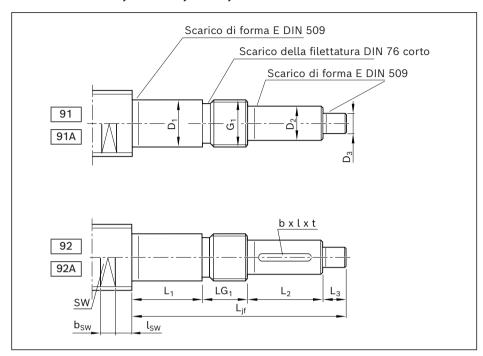
Indicazioni per l'ordine:

BASA | 20x5R x 3 | SEM-E-S - 4 | 00 | 1 | 2 | T7 | R | 83Z200 | 51Z120 | 1250 | 0 | 1


_	1			1, .													
Forma	Versione ¹⁾	Gra	ndezza	(mm)											1		
															Foro di cen	traggio	
		d ₀	P	L _{jf}	D_1	L ₁	D_2	L_2	G ₁	LG ₁	D_R	L_R	D_F	L _F	Z	t _Z	
					h6		h7										
831	060	6	1/2	40	6	14	5	16	M6x0,5	10	12	15	5,0	1	_	_	
	061	6	1/2	41	6	10	5	16	M6x0,5	15	12	15	5,0	1	_	-	
	062	8	1/2/2,5/5	41	6	10	5	16	M6x0,5	15	12	15	6,0	1	_	_	
	065	8	1/2/2,5/5	40	6	14	5	16	M6x0,5	10	12	15	6,0	1	_	_	
	120	12	2/5/10	60	12	23	10	25	M12x1	12	16	15	8,0	1	M3	9,0	
	121	12	2/5/10	60	12	17	10	25	M12x1	18	15	15	8,0	1	M3	9,0	
	122	16	5/10/16	60	12	17	10	25	M12x1	18	18	17	12,0	1	М3	9,0	
	170	16	5/10/16	75	17	23	15	30	M17x1	22	23	17	12,0	1	M5	12,5	
83/83A	200	20	5/10/20	88	20	26	18	40	M20x1	22	25	15	16,5	8	M6	16,0	
	250	25	5/10/25	102	25	26	22	50	M25x1,5	26	32	15	21,0	8	M8	19,0	
	300	32	5/10/20/32	101	30	25	25	50	M30x1,5	26	40	20	28,0	8	M10	22,0	
	400	40	5/10/12/16/20	132	40	44	36	60	M40x1,5	28	50	20	33,5	8	M12	28,0	
	500	50	10/12/20	154	50	52	40	70	M50x1,5	32	60	20	43,5	10	M16	36,0	
841	120	12	2/5/10	60	12	23	10	25	M12x1	12	16	15	8,0	1	M3	9,0	
	170	16	5/10/16	75	17	23	15	30	M17x1	22	23	17	12,0	1	M5	12,5	
84/84A	200	20	5/10/20	88	20	26	18	40	M20x1	22	25	15	16,5	8	M6	16,0	
	250	25	5/10/25	102	25	26	22	50	M25x1,5	26	32	15	21,0	8	M8	19,0	
	300	32	5/10/20/32	101	30	25	25	50	M30x1,5	26	40	20	28,0	8	M10	22,0	
	400	40	5/10/12/16/20/40	132	40	44	36	60	M40x1,5	28	50	20	33,5	8	M12	28,0	
	500	50	10/12/20	154	50	52	40	70	M50x1,5	32	60	20	43,5	10	M16	36,0	

¹⁾ Con la versione è possibile stabilire in modo univoco la correlazione tra le estremità delle viti e i gruppi cuscinetti di vincolo.

Cuscinetti di vincolo per viti con estremità di forma 831, 83, 83A, 841, 84, 84A



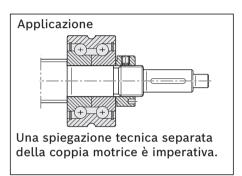
									Cava p	er chia	vetta	Numero di			Unità supporto
Version	e ¹⁾ Foro e	esag	gonale	Filett	atura	Aper	tura cl	niave	secon	do DIN	6885	identificazion	e gruppo		cuscinetti di vincolo
		S	ts	G	t _G	SW	b _{SW}	I_{SW}	b	l	t	Cuscinetto			Numero di identificazione
									P9			LAF	LAN	LAL	SEB-F
060		-	_	-	_	_	-	-	_	_	_	_	_	_	R1591 106 00
061		-	_	-	-	_	-	-	_	_	-	_	_	R1590 406 00	_
062		-	_	-	-	_	-	-	_	_	-	_	_	R1590 406 00	_
065		-	_	-	-	_	-	_	_	_	_	_	R1590 106 00	_	R1591 106 00
120		4	4	M4	6	-	-	-	_	_	-	_	R1590 112 00	_	R1591 112 20
121		4	4	M4	6	_	-	_	_	_	-	_	_	R1590 412 00	_
122		4	4	M4	6	_	-	-	_	_	-	_	_	R1590 412 00	_
170		4	4	M6	9	-	-	-	_	_	_	R1590 017 30	R1590 117 30	_	R1591 117 30
200		5	5	M6	9	15	10	8,5	_	_	-	R1590 020 30	R1590 120 30	_	R1591 120 30
250		6	6	M8	12	19	10	10,5	_	_	_	_	-	-	-
300		8	8	M10	15	24	15	10,5	_	_	_	R1590 030 30	R1590 130 30	_	R1591 130 30
400		12	12	M12	18	30	15	12,5	_	_	-	R1590 040 30	R1590 140 30	_	R1591 140 30
500		12	12	M16	24	41	22	15,5	_	_	-	R1590 050 30	R1590 150 30	_	R1591 150 30
120		4	4	M4	6	_	-	-	3	20	1,8	_	R1590 112 00	_	R1591 112 20
170		4	4	M6	9	_	-	_	5	25	3,0	R1590 017 30	R1590 117 30	_	R1591 117 30
200		5	5	M6	9	15	10	8,5	6	28	3,5	R1590 020 30	R1590 120 30	_	R1591 120 30
250		6	6	M8	12	19	10	10,5	6	36	3,5	_	_	_	_
300		8	8	M10	15	24	15	10,5	8	36	4,0	R1590 030 30	R1590 130 30	_	R1591 130 30
400		12	12	M12	18	30	15	12,5	10	40	5,0	R1590 040 30	R1590 140 30	_	R1591 140 30
500		12	12	M16	24	41	22	15,5	12	50	5,0	R1590 050 30	R1590 150 30	_	R1591 150 30

Forma 91, 91A, 92, 92A

Opzione (lavorazione lato frontale)

K Nessuna

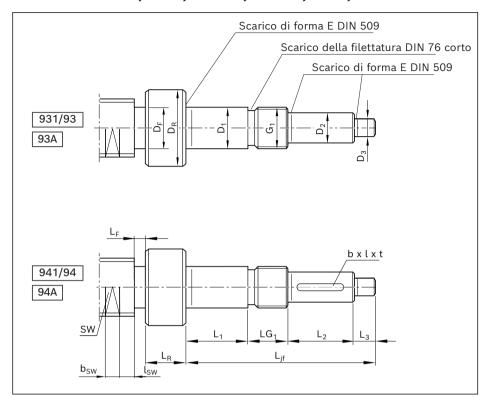
Indicazioni per l'ordine:


BASA | 20x5R x 3 | SEM-E-S - 4 | 00 | 1 | 2 | T7 | R | 92AK120 | 41Z120 | 1250 | 0 | 1

Forma	Versione ¹⁾	Gra	indezza	(mm)									
		d ₀	P	L _{jf}	D ₁ h6	L ₁	D ₂	L ₂	D ₃	L ₃	G ₁	LG ₁	
91/91A	060	12	2/5/10	50	6	14	5	16	4	10	M6x0,5	10	
	100	16	5/10/16	60	10	18	8	20	4	10	M10x1	12	
	120	20	5/10/20/40	75	12	23	10	25	6	15	M12x1	12	
	170	25	5/10/25	90	17	23	15	30	6	15	M17x1	22	
	200	32	5/10/20/32/64	103	20	26	18	40	6	15	M20x1	22	
	250	40	10/12/16/20/25/30/40	145	25	54	22	50	6	15	M25x1,5	26	
	300	40	5/10/12/16/20/25/30/40	116	30	25	25	50	6	15	M30x1,5	26	
	301	50	10/12/16/20/25/30/40	145	30	54	25	50	6	15	M30x1,5	26	
	350	50	5	125	35	32	30	50	6	15	M35x1,5	28	
	400	63	10/20/40	147	40	44	36	60	6	15	M40x1,5	28	
	500	80	10/20/40	169	50	52	40	70	6	15	M50x1,5	32	
92/92A	100	16	5/10/16	60	10	18	8	20	4	10	M10x1	12	
	120	20	5/10/20/40	75	12	23	10	25	6	15	M12x1	12	
	170	25	5/10/25	90	17	23	15	30	6	15	M17x1	22	
	200	32	5/10/20/32/64	103	20	26	18	40	6	15	M20x1	22	
	250	40	10/12/16/20/25/30/40	145	25	54	22	50	6	15	M25x1,5	26	
	300	40	5/10/12/16/20/25/30/40	116	30	25	25	50	6	15	M30x1,5	26	
	301	50	10/12/16/20/25/30/40	145	30	54	25	50	6	15	M30x1,5	26	
	350	50	5	125	35	32	30	50	6	15	M35x1,5	28	
	400	63	10/20/40	147	40	44	36	60	6	15	M40x1,5	28	
	500	80	10/20/40	169	50	52	40	70	6	15	M50x1,5	32	

¹⁾ Con la versione è possibile stabilire in modo univoco la correlazione tra le estremità delle viti e i gruppi cuscinetti di vincolo.

Cuscinetti di vincolo per viti con estremità di forma 91, 91A, 92, 92A



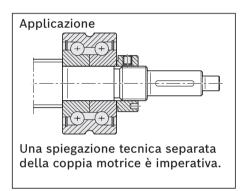
							gruppo		
Versione ¹⁾	Cava per	chiavetta		Apertu	ra chiav	re	Unità supporto	Cuscinetti	
	secondo I	DIN 6885					cuscinetti di vincolo		
	b	ι	t	SW	b _{SW}	I_{SW}	SEB-F	LAF	LAN
	P9						Numero di identificazione	Numero di identificazione	Numero di identificazione
060	-	-	-	9	10	8,5	R1591 106 20	_	R1590 106 00
100	-	-	_	11	10	8,5	R1591 110 20	_	R1590 110 00
120	-	-	_	15	10	8,5	R1591 112 20	R1590 012 00	R1590 112 00
170	-	-	-	19	10	10,5	R1591 117 30	R1590 017 30	R1590 117 30
200	-	-	-	24	15	10,5	R1591 120 30	R1590 020 30	R1590 120 30
250	-	-	_	30	15	12,5	R1591 225 30	R1590 325 30	R1590 225 30
300	-	-	-	30	15	12,5	R1591 130 30	R1590 030 30	R1590 130 30
301	-	-	_	41	22	15,5	R1591 230 30	R1590 330 30	R1590 230 30
350	-	-	_	41	22	15,5	R1591 135 30	R1590 035 30	R1590 135 30
400	-	-	_	50	27	16,5	R1591 140 30	R1590 040 30	R1590 140 30
500	-	-	-	60	27	18,5	R1591 150 30	R1590 050 30	R1590 150 30
100	2	14	1,2	11	10	8,5	R1591 110 20	-	R1590 110 00
120	3	20	1,8	15	10	8,5	R1591 112 20	R1590 012 00	R1590 112 00
170	5	25	3,0	19	10	10,5	R1591 117 30	R1590 017 30	R1590 117 30
200	6	28	3,5	24	15	10,5	R1591 120 30	R1590 020 30	R1590 120 30
250	6	36	3,5	30	15	12,5	R1591 225 30	R1590 325 30	R1590 225 30
300	8	36	4,0	30	15	12,5	R1591 130 30	R1590 030 30	R1590 130 30
301	8	36	4,0	41	22	15,5	R1591 230 30	R1590 330 30	R1590 230 30
350	8	36	4,0	41	22	15,5	R1591 135 30	R1590 035 30	R1590 135 30
400	10	40	5,0	50	27	16,5	R1591 140 30	R1590 040 30	R1590 140 30
500	12	50	5,0	60	27	18,5	R1591 150 30	R1590 050 30	R1590 150 30

Forma 931, 93, 93A, 941, 94, 94A

Opzione (lavorazione lato frontale)

K Nessuna

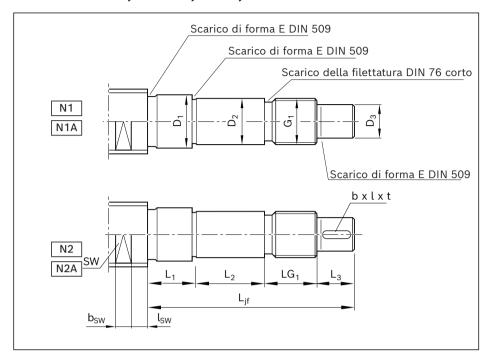
Indicazioni per l'ordine:

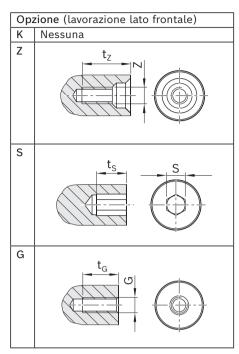

BASA | 20x5R x 3 | SEM-E-S - 4 | 00 | 1 | 2 | T7 | R | 93K200 | 41Z120 | 1250 | 0 | 1

Forma	Versione ¹⁾	Gra	ndezza	(mm)													
		d ₀	P	L _{jf}	D ₁	L ₁	D ₂	L ₂	D ₃	L ₃	G ₁	LG ₁	D _R	L_R	D_F	L _{F max}	
931	060	8	1/2/2,5/5	50	6	14	5	16	4	10	M6x0,5	10	12	15	6,0	1	
	120	12	2/5/10	75	12	23	10	25	6	15	M12x1	12	16	15	8,0	1	
	170	16	5/10/16	90	17	23	15	30	6	15	M17x1	22	23	17	12,0	1	
93/93A	200	20	5/10/20	103	20	26	18	40	6	15	M20x1	22	25	15	16,5	8	
ļ-	250	25	5/10/25	117	25	26	22	50	6	15	M25x1,5	26	32	15	21,0	8	
	300	32	5/10/20/32	116	30	25	25	50	6	15	M30x1,5	26	40	20	28,0	8	
	400	40	5/10/12/16/20	147	40	44	36	60	6	15	M40x1,5	28	50	20	33,5	8	
	500	50	10/12/20	169	50	52	40	70	6	15	M50x1,5	32	60	20	43,5	10	
941	120	12	2/5/10	75	12	23	10	25	6	15	M12x1	12	16	15	8,0	1	
	170	16	5/10/16	90	17	23	15	30	6	15	M17x1	22	23	17	12,0	1	
94/94A	200	20	5/10/20	103	20	26	18	40	6	15	M20x1	22	25	15	16,5	8	
	250	25	5/10/25	117	25	26	22	50	6	15	M25x1,5	26	32	15	21,0	8	
	300	32	5/10/20/32	116	30	25	25	50	6	15	M30x1,5	26	40	20	28,0	8	
	400	40	5/10/12/16/20	147	40	44	36	60	6	15	M40x1,5	28	50	20	33,5	8	
	500	50	10/12/20	169	50	52	40	70	6	15	M50x1,5	32	60	20	43,5	10	

¹⁾ Con la versione è possibile stabilire in modo univoco la correlazione tra le estremità delle viti e i gruppi cuscinetti di vincolo.

Cuscinetti di vincolo per viti con estremità di forma 931, 93, 93A, 941, 94, 94A





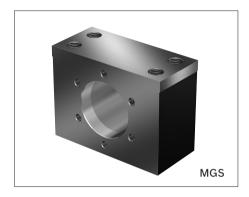
							gruppo		
Versione ¹⁾	Cava pe	r chiavet	ta	Apertu	ra chia	ve	Unità supporto cuscinetti	Cuscinetti	
	secondo	DIN 688	35				di vincolo		
	b	ι	t	SW	b _{SW}	I_{SW}	SEB-F	LAF	LAN
	P9						Numero di identificazione	Numero di identificazione	Numero di identificazione
060	_	_	_	-	-	_	R1591 106 00	_	R1590 106 00
120	_	_	_	-	-	_	R1591 112 20	-	R1590 112 00
170	_	_	_	-	-	_	R1591 117 30	R1590 017 30	R1590 117 30
200	-	_	_	15	10	8,5	R1591 120 30	R1590 020 30	R1590 120 30
250	_	_	_	19	10	10,5	_	_	_
300	_	_	_	24	15	10,5	R1591 130 30	R1590 030 30	R1590 130 30
400	_	_	_	30	15	12,5	R1591 140 30	R1590 040 30	R1590 140 30
500	_	_	_	41	22	15,5	R1591 150 30	R1590 050 30	R1590 150 30
120	3	20	1,8	-	-	_	R1591 112 20	_	R1590 112 00
170	5	25	3,0	-	_	_	R1591 117 30	R1590 017 30	R1590 117 30
200	6	28	3,5	15	10	8,5	R1591 120 30	R1590 020 30	R1590 120 30
250	6	36	3,5	19	10	10,5	-	-	-
300	8	36	4,0	24	15	10,5	R1591 130 30	R1590 030 30	R1590 130 30
400	10	40	5,0	30	15	12,5	R1591 140 30	R1590 040 30	R1590 140 30
500	12	50	5,0	41	22	15,5	R1591 150 30	R1590 050 30	R1590 150 30

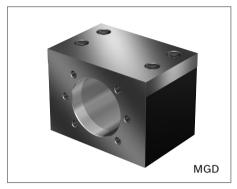
Forma N1, N1A, N2, N2A

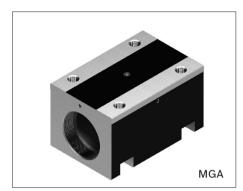
Indicazioni per l'ordine:

BASA | 25x5R x 3 | SEM-E-S - 4 | 00 | 1 | 2 | T7 | R | N1K170 | 41Z170 | 1250 | 0 | 1

Forma	Versione 1)	Gran	Grandezza									ı	
		d ₀	P	L _{jf}	D ₁	L ₁	D ₂	L ₂	D ₃	L ₃	G ₁	LG ₁	
N1/N1A	170	25	5/10/25	85	21,0	10	17	23	15	30	M17x1	22	
	200	32	5/10/20/32	98	27,5	10	20	26	18	40	M20x1	22	
	250	40	10/12/16/20/25/30/40	140	33,5	10	25	54	22	50	M25x1,5	26	
	300	40	5	111	36,0	10	30	25	25	50	M30x1,5	26	
	301	50	10/12/16/20/25/30/40	103	43,0	10	30	25	25	50	M30x1,5	18	
	350	50	5	120	46,0	10	35	32	30	50	M35x1,5	28	
	400	63	10/20/40	142	56,0	10	40	44	36	60	M40x1,5	28	
	500	80	10/20/40	164	66,5	10	50	52	40	70	M50x1,5	32	
N2/N2A	170	25	5/10/25	85	21,0	10	17	23	15	30	M17x1	22	
	200	32	5/10/20/32	98	27,5	10	20	26	18	40	M20x1	22	
	250	40	10/12/16/20/25/30/40	140	33,5	10	25	54	22	50	M25x1,5	26	
	300	40	5	111	36,0	10	30	25	25	50	M30x1,5	26	
	301	50	10/12/16/20/25/30/40	103	43,0	10	30	25	25	50	M30x1,5	18	
	350	50	5	120	46,0	10	35	32	30	50	M35x1,5	28	
	400	63	10/20/40	142	56,0	10	40	44	36	60	M40x1,5	28	
	500	80	10/20/40	164	66,5	10	50	52	40	70	M50x1,5	32	

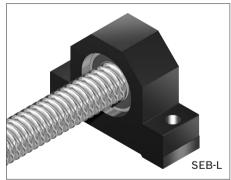

¹⁾ Con la versione è possibile stabilire in modo univoco la correlazione tra le estremità delle viti e i gruppi cuscinetti di vincolo.


Una spiegazione tecnica separata della coppia motrice è imperativa.

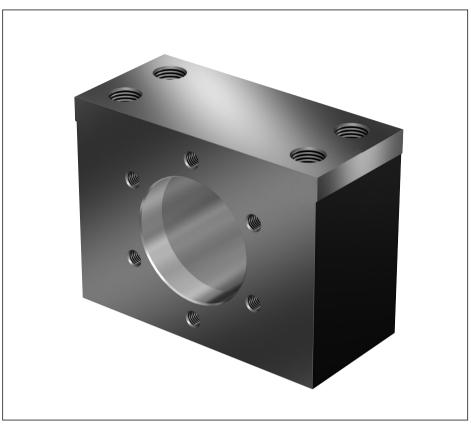

Versione 1)	Cava	oer chi	avetta	Foro di ce	ntraggio	Foro esa	gonale	Filettat	ura	Apertur	a chiave	
	b	l	t	Z	tz	S	ts	G	t _g	sw	b _{SW}	l_{SW}
	P9											
170	-	_	_	M5	12,5	4	4	M6	9	19	10	10,5
200	-	-	_	M6	16,0	5	5	M6	9	24	15	10,5
250	-	_	_	M8	19,0	6	6	M8	12	30	15	12,5
300	-	_	-	M10	22,0	8	8	M10	15	30	15	12,5
301	-	-	-	M10	22,0	8	8	M10	15	41	22	15,5
350	-	-	-	M10	22,0	10	10	M12	18	41	22	15,5
400	-	_	_	M12	28,0	12	12	M12	18	50	27	16,5
500	-	-	_	M16	36,0	12	12	M16	24	60	27	18,5
170	5	25	3,0	M5	12,5	4	4	M6	9	19	10	10,5
200	6	28	3,5	M6	16,0	5	5	M6	9	24	15	10,5
250	6	36	3,5	M8	19,0	6	6	M8	12	30	15	12,5
300	8	36	4,0	M10	22,0	8	8	M10	15	30	15	12,5
301	8	36	4,0	M10	22,0	8	8	M10	15	41	22	15,5
350	8	36	4,0	M10	22,0	10	10	M12	18	41	22	15,5
400	10	40	5,0	M12	28,0	12	12	M12	18	50	27	16,5
500	12	50	5,0	M16	36,0	12	12	M16	24	60	27	18,5

Panoramica

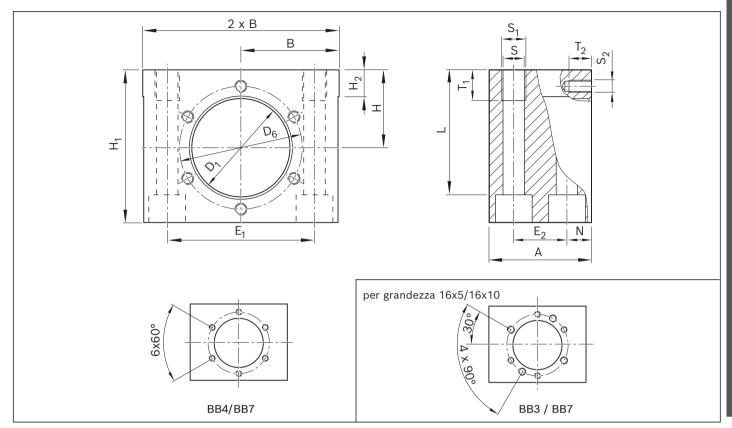
Rexroth offre un'ampia gamma di accessori per viti a sfere. Sono a disposizione ad es. supporti chiocciola, unità supporto cuscinetti di vincolo, cuscinetti, ghiere a tacche, unità di lubrificazione frontale. Durante il dimensionamento occorre tenere conto di un rapporto ragionevole tra i fattori di carico di cuscinetto e la vite a sfere. Ulteriori informazioni sono riportate nel presente capitolo.



Supporti chiocciola MGS


I supporti chiocciola MGS in acciaio sono idonei per chiocciole FEM-E-S, FDM-E-S, FEP-E-S, SEM-E-S

Oltre ad essere avvitati, i supporti devono essere fissati ad accoppiamento geometrico (ad es. due spine, diametro = diametro della vite S₂). Per il fissaggio raccomandiamo viti con classe di resistenza 8.8.


Per la coppia di serraggio vedi "Montaggio nella macchina" a pagina 147

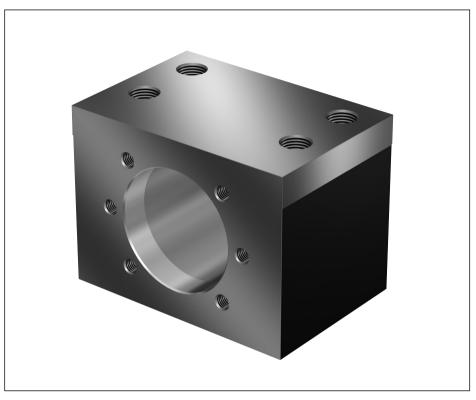
Superfici laterali di riferimento da ambo i lati.

A Se si utilizza una vite a sfere con unità di lubrificazione frontale, quest'ultima può sporgere dal supporto. Tenerne conto per il calcolo della corsa.

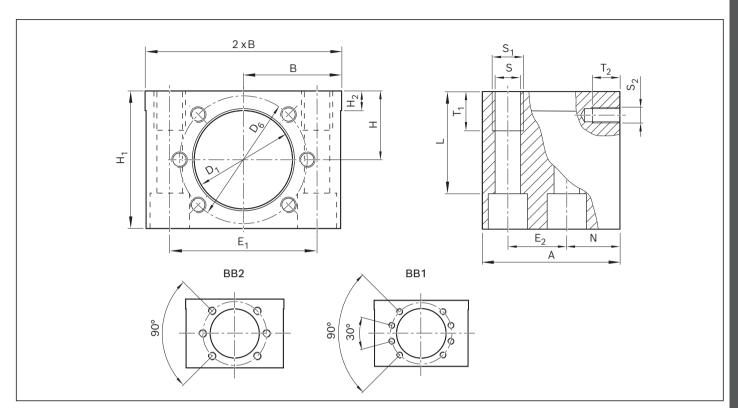
Grandezza	Numero di identificazione	Massa (kg)	· ·	SEM-E-S	Vite a testa cilindrica ISO 4762
$d_0 \times P \times D_w$			FEP-E-S		
16x5R/L x 3	R1506 000 20	0,850	BB3	BB7	M8
16x10R x 3					
16x16R x 3	R1506 100 20	1,050	BB4	BB7	M8
20x5R/L x 3					
20x10R x 3					
20x20R x 3,5	R1506 200 20	1,178	BB4	BB7	M8
20x40R x 3,5					
25x5R/L x 3					
25x10R x 3					
25x25R x 3,5	R1506 300 20	1,746	BB4	BB7	M10
32x5R/L x 3,5					
32x10R x 3,969					
32x20R x 3,969	R1506 400 20	2,367	BB4	BB7	M12
32x32R x 3,969					
32x64R x 3,969					
40x5R/L x 3,5					
40x10R/L x 6	R1506 400 21	3,587	BB4	BB7	M14
40x20R x 6					
40x40R x 6	R1506 500 21	6,187	BB4	BB7	M16
50x5R x 3,5	R1506 500 20	4,000	BB4	BB7	M14
50x10R x 6	R1506 500 21	6,187	BB4	BB7	M16
50x16R x 6					
50x20R x 6,5	R1506 600 20	7,173	BB4	BB7	M16
50x40R x 6,5	_				
63x10R x 6					
80x10R x 6,5	R1506 700 20	9,334	BB4	BB7	M16

0 1	I, ,															
Grandezza	(mm)			В	Н					N	۱ ۵	١٥				
$d_0 \times P \times D_w$	D ₁	D ₆	Α			H ₁	H ₂	E ₁	E ₂	IN	5	S ₁	T ₁	S ₂	T ₂	Lunghezza per il serraggio
10.50/1.0	H7	40	40	±0,01	±0,01		4.0	50 0.4	00.01	10	0.4		45		4.0	L
16x5R/L x 3	28	40	40	35,0	28	55	10	52±0,1	20±0,1	10	8,4	M10	15	M6	10	44,0
16x10R x 3																
16x16R x 3	33	45	40	37,5	32	62	10	56 ±0,1	20 ±0,1	10	8,4	M10	15	M6	10	51,0
20x5R/L x 3																
20x10R x 3																
20x20R x 3,5	38	50	40	42,5	34	65	10	63 ±0,1	20 ±0,1	10	8,4	M10	15	M6	10	54,0
20x40R x 3,5																
25x5R/L x 3																
25x10R x 3																
25x25R x 3,5	48	60	50	47,5	38	75	10	72 ±0,1	26 ±0,1	12	10,5	M12	15	M6	10	61,0
32x5R/L x 3,5																
32x10R x 3,969																
32x20R x 3,969	56	68	60	52,5	42	82	12	82 ±0,1	30 ±0,1	15	13,0	M16	20	M6	12	64,0
32x32R x 3,969																
32x64R x 3,969]															
40x5R/L x 6	1															
40x10R/L x 6	63	78	65	60,0	50	98	12	93 ±0,1	35 ±0,1	15	15,0	M18	25	M8	14	79,5
40x20R x 6	1															
40x40R x 6	72	90	80	70,0	58	113	12	108 ±0,15	46 ±0,15	17	17,0	M20	30	M10	18	92,0
50x5R x 3,5	68	82	65	65,0	52	101	12	100 ±0,15	35 ±0,15	15	15,0	M18	30	M8	14	82,5
50x10R x 6 50x16R x 6	72	90	80	70,0	58	113	12	108 ±0,15	46 ±0,15	17	17,0	M20	30	M10	18	92,0
50x20R x 6,5	85	105	80	75,0	65	128	15	121 ±0,15	46 ±0,15	17	17,0	M20	30	M10	18	107,0
50x40R x 6,5	1															
63x10R x 6	1															
80x10R x 6,5	105	125	80	85,0	78	153	15	140 ±0,20	46 ±0,15	17	17,0	M20	30	M12	20	132,0

Supporti chiocciola MGD


I supporti chiocciola MGD in acciaio sono idonei per chiocciole FEM-E-B, FDM-E-B, SEM-E-C e FED-E-B

Oltre ad essere avvitati, i supporti devono essere fissati ad accoppiamento geometrico (ad es. due spine, diametro = diametro della vite). Per il fissaggio raccomandiamo viti con classe di resistenza 8.8.


Per la coppia di serraggio vedi "Montaggio nella macchina" a pagina 147

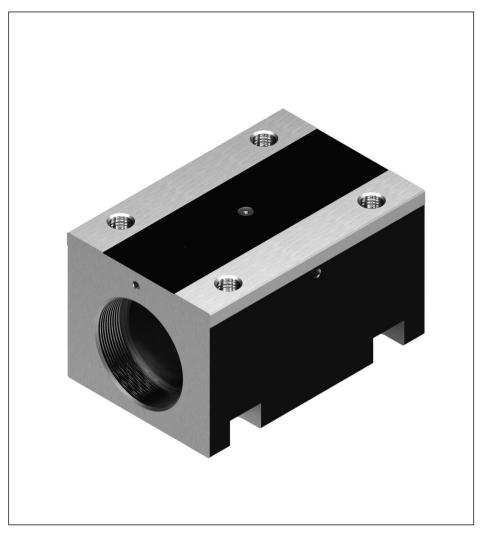
Superfici laterali di riferimento da ambo i lati.

A Se si utilizza una vite a sfere con unità di lubrificazione frontale, quest'ultima può sporgere dal supporto. Tenerne conto per il calcolo della corsa.

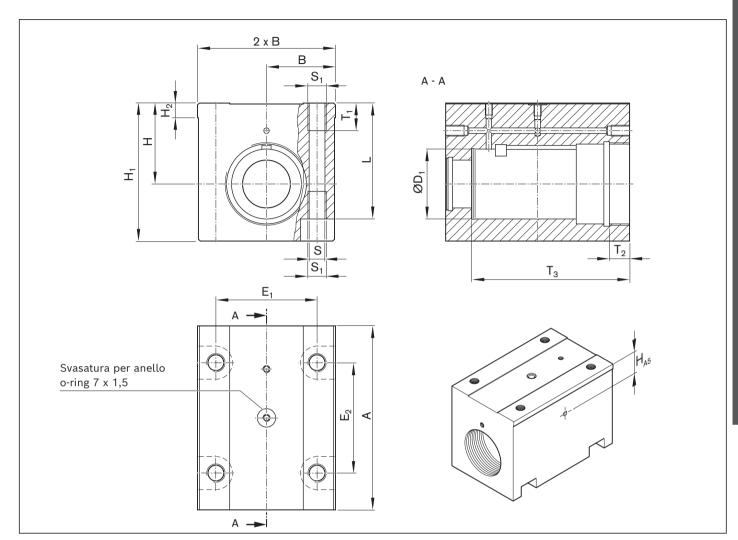
Grandezza	Numero di identificazione	Massa	Disposizione dei fori	Vite a testa cilindrica
d ₀ x P x D _w		(kg)		
16 x 5R/L x 3	R1506 000 50	0,91	BB2	M8
16 x 10R x 3				
16 x 16R x 3				
20 x 5R/L x 3	R1506 100 50	1,18	BB2	M8
20 x 10R x 3				
20 x 20R x 3,5				
25 x 5R/L x 3	R1506 200 50	1,33	BB2	M8
25 x 10R x 3				
25 x 25R x 3,5				
32 x 5R/L x 3,5	R1506 300 50	2,27	BB2	M12
32 x 10R x 3,969				
32 x 20R x 3,969				
32 x 32R x 3,969				
40 x 5R/L x 3,5	R1506 400 50	3,61	BB1	M14
40 x 10R/L x 6				
40 x 12R x 6				
40 x 16R x 6				
40 x 20R x 6				
40 x 25R x 6				
40 x 30R x 6	_			
40 x 40R x 6				
50 x 5R x 3,5	R1506 500 50	5,63	BB1	M16
50 x 10R x 6	_			
50 x 12R x 6	_			
50 x 16R x 6	_			
50 x 20R x 6,5	_			
50 x 25R x 6,5	_			
50 x 30R x 6,5	_			
50 x 40R x 6,5				
63 x 10R x 6	R1506 600 50	6,72	BB1	M16
63 x 20R x 6,5	R1506 600 51	7,67	BB1	M16
63 x 40R x 6,5				
80 x 10R x 6,5	R1506 700 50	8,60		M16
80 x 20R x 12,7	R1506 700 51	10,53	BB1	M16
80 x 40R x 12,7				

	1, ,															
Grandezza	(mm)															
	D ₁	D ₆	Α	В	Н	H ₁	H ₂	E ₁	E ₂	N	S	S ₁	T ₁	S_2	T ₂	Lunghezza per il serraggio
$d_0 \times P \times D_w$	H7			±0,01	±0,01											L
16 x 5R/L x 3	28	38	50	35	24	48	10	50 ±0,1	20 ±0,1	20	8,4	M10	15	M5	10	37,0
16 x 10R x 3																
16 x 16R x 3																
20 x 5R/L x 3	36	47	55	37,5	28	56	10	55 ±0,1	23 ±0,1	22	8,4	M10	15	M6	11	45,0
20 x 10R x 3																
20 x 20R x 3,5																
25 x 5R x 3	40	51	55	40	30	60	10	60 ±0,1	23 ±0,1	22	8,4	M10	15	M6	11	49,0
25 x 10R x 3																
25 x 25R x 3,5																
32 x 5R/L x 3,5	50	65	70	50	35	70	10	75 ^{±0,1}	30 ±0,1	27	13,0	M16	20	M8	14	52,0
32 x 10R x 3,969																
32 x 20R x 3,969																
32 x 32R x 3,969																
40 x 5R/L x 3,5	63	78	80	60	42	84	12	90 ±0,1	35 ±0,1	31	15,0	M18	25	M8	17	65,5
40 x 10R/L x 6																
40 x 12R x 6																
40 x 16R x 6																
40 x 20R x 6																
40 x 25R x 6																
40 x 30R x 6																
40 x 40R x 6																
50 x 5R x 3,5	75	93	95	70	48	96	12	110 ±0,15	45 ±0,15	34	17,0	M20	30	M10	17	75,0
50 x 10R x 6																
50 x 12R x 6																
50 x 16R x 6																
50 x 20R x 6,5																
50 x 25R x 6,5																
50 x 30R x 6,5																
50 x 40R x 6,5																
63 x 10R x 6	90	108	100	75	55	110	15	120 ±0,2	46 ±0,15	37	17,0	M20	30	M10	20	89,0
63 x 20R x 6,5	95	115	100	80	58	116	15	130 ±0,2	46 ±0,15	37	17,0	M20	30	M12	20	95,0
63 x 40R x 6,5																
80 x 10R x 6,5	105	125	100	85	63	126	15	140 ±0,2	46 ±0,15	37	17,0	M20	30	M12	20	105,0
80 x 20R x 12,7	125	145	100	95	73	146	15	160 ±0,2	46 ±0,15	37	17,0	M20	30	M12	22	125,0
80 x 40R x 12,7																

Supporti chiocciola MGA


I supporti chiocciola MGA in alluminio sono idonei per chiocciole ZEM-E-S, ZEM-E-K e ZEM-E-A

Per il fissaggio raccomandiamo viti con classe di resistenza 8.8.


Per la coppia di serraggio vedi "Montaggio nella macchina" a pagina 147

Superfici laterali di riferimento da ambo i lati.

Fornitura: inclusi grani filettati, distanziale, anello filettato, chiavetta

Grandezza	Numero di identificazione	Massa	Vite cilindrica per l'avvitamento dal basso ISO 4762	
$d_0 \; x \; P \; x \; D_W$		(kg)		
20 x 5R x 3	R1506 100 70	1,10	M8	
20 x 10R x 3				
20 x 20R x 3,5				
32 x 5R x 3,5	R1506 300 70	2,31	M10	
32 x 10R x 3,969				
32 x 20R x 3,969				
32 x 32R x 3,969				
40 x 5R x 3,5	R1506 400 70	4,32	M14	
40 x 10R x 6				
40 x 20R x 6				
40 x 40R x 6				

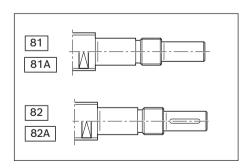
(mm)														
А	B ±0,01	ØD ₁ H6	E ₁	E ₂	H ±0,01	H ₁	H ₂	H _{A5}	S	S ₁	T ₁	T ₂	T ₃	Lunghezza per il serraggio L
100	37,5	38	55	60	44	75	8	15	8,6	M10	15	11	86	63
150	50,0	50	75	100	49	80	9	16	10,5	M12	18	15	131	66
180	60,0	63	90	120	59	105	10	18	14,5	M16	24	20	155	86

Unità supporto cuscinetti di vincolo SEC-F, alluminio

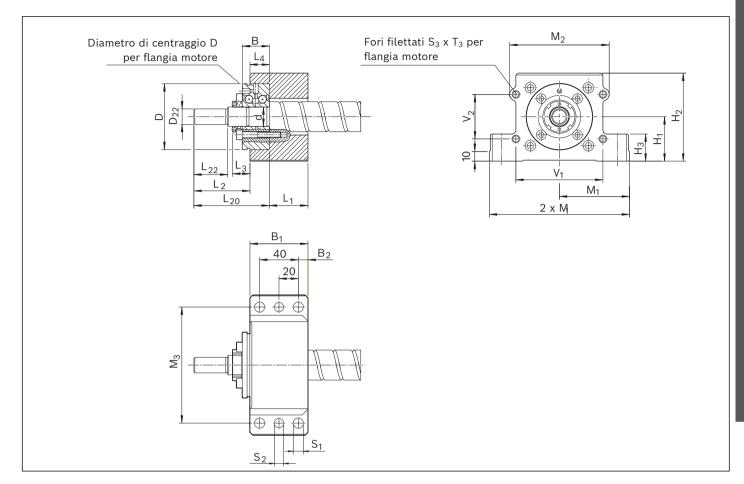
Vincolatura assiale con cuscinetto a doppia corona di sfere a contatto obliquo LGF-B-...

L'unità supporto cuscinetti di vincolo è composta da:

- supporto di precisione in alluminio con superfici laterali di riferimento su ambo i lati
- cuscinetto a doppia corona di sfere a contatto obliquo LGF...
- ghiera a tacche NMZ


La ghiera a tacche viene fornita a parte.

È obbligatoria una progettazione tecnica a parte per il rilevamento dei valori limite per tutti gli accessori (ad es. unità supporto cuscinetti di vincolo, gruppo cuscinetti di vincolo, etc.).

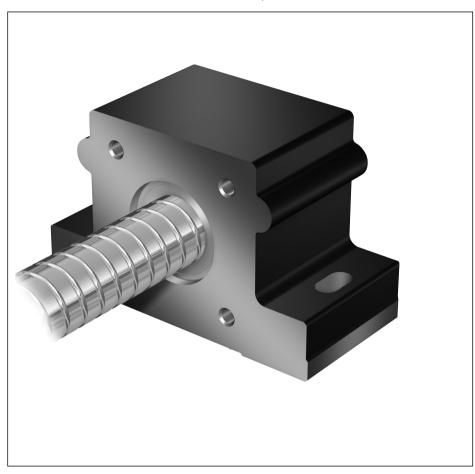


Misure	Unità supporto	Cuscinetto a	doppia coro	na di s	fere a	conta	tto obliquo	Ghiera a	a tacche	Massa
	completa	Fattori di cai	rico (assiale)	(mm)			Sigla		Sigla	completa
	Numero di	dyn. C	stat. C ₀					M _A		
d ₀ x P	identificazione	(N)	(N)	d	D	В		(Nm)		(kg)
20x5/10/20/40	R1594 012 00	17 000	24 700	12	55	25	LGF-B-1255	8,0	NMZ 12x1	1,49
32x5/10/20/32/64	R1594 020 00	26 000	47 000	20	68	28	LGF-B-2068	18,0	NMZ 20x1	1,88
40x5/10/12/16/20/25/30/40	R1594 030 00	29 000	64 000	30	80	28	LGF-B-3080	32,0	NMZ 30x1,5	2,75

Estremità della vite di forma 81, 81A, 82, 82A adatta per attacco motore.

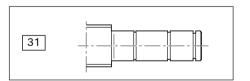
Grandezza	(mm)																			
	B ₁	B ₂	L ₁	L ₂	L ₃	L_4	L ₂₀	L ₂₂	D ₂₂	M_1	M ₂	M ₃	H ₁	H ₂	Нз	S ₁	S ₂	S ₃	T ₃	V ₁	V_2
d ₀ x P										±0,015			±0,015								
20x5/10/20/40	60	10,0	42	42	15	18	60	25	10	72,5	80	120	41	81	28	10,5	9,7	M8	15	66	50
32x5/10/20/32/64	60	10,0	40	58	18	20	78	35	16	72,5	103	120	46	91	28	10,5	9,7	M8	15	90	46
40x5/10/12/16/20/25/30/40	65	12,5	45	73	20	20	93	50	25	90,0	116	150	56	111	33	13,0	11,7	M10	20	100	65

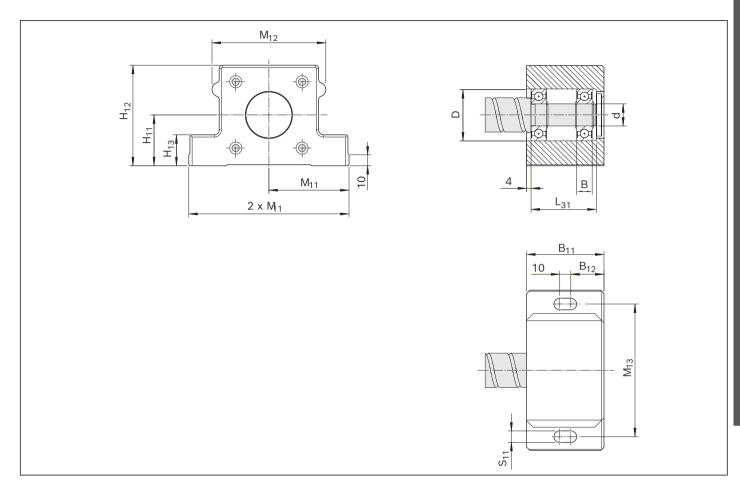
Unità supporto cuscinetti di vincolo SEC-L, alluminio


Vincolatura libera assialmente con cuscinetto radiale rigido a sfere DIN 625

L'unità supporto cuscinetti di vincolo è composta da:

- supporto di precisione in alluminio con superfici laterali di riferimento su ambo i lati
- cuscinetti radiali rigidi a sfere **DIN 625**
- anello di sicurezza DIN 471
- coperchio


Tutte le parti vengono fornite separatamente.


È obbligatoria una progettazione tecnica a parte per il rilevamento dei valori limite per tutti gli accessori (ad es. unità supporto cuscinetti di vincolo, gruppo cuscinetti di vincolo, etc.).

Misure	Unità supporto	Cuscinetto ra	diale rigido a	sfere s	econdo	DIN 6	25	Anello di sicurezza	Massa
	completa	Fattori di car	ico (radiale)	(mm)			Sigla	secondo DIN 471	completa
	Numero di	dyn. C	stat. C ₀				DIN 625		
d ₀ x P	identificazione	(N)	(N)	d	D	В			(kg)
20x5/10/20/40	R1594 615 00	7 800	3 250	15	35	11	6202.2RS	15x1	1,24
32x5/10/20/32/64	R1594 620 00	12 700	5 700	20	47	14	6204.2RS	20x1,2	1,66
40x5/10/12/16/20/25/30/40	R1594 630 00	19 300	9 800	30	62	16	6206.2RS	30x1,5	2,74

Adatti per viti con estremità: forma

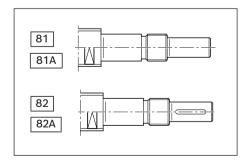
Grandezza	(mm)									
	B ₁₁	B ₁₂	L ₃₁	M ₁₁	M ₁₂	M ₁₃	H ₁₁	H ₁₂	H ₁₃	S ₁₁
d ₀ x P				±0,015			±0,015			
20x5/10/20/40	60	25	47	72,5	80	120	41	81	28	10,5
32x5/10/20/32/64	70	30	60	72,5	103	120	46	91	28	10,5
40x5/10/12/16/20/25/30/40	80	35	68	90,0	116	150	56	111	33	13,0

Unità supporto cuscinetti di vincolo SES-F, acciaio

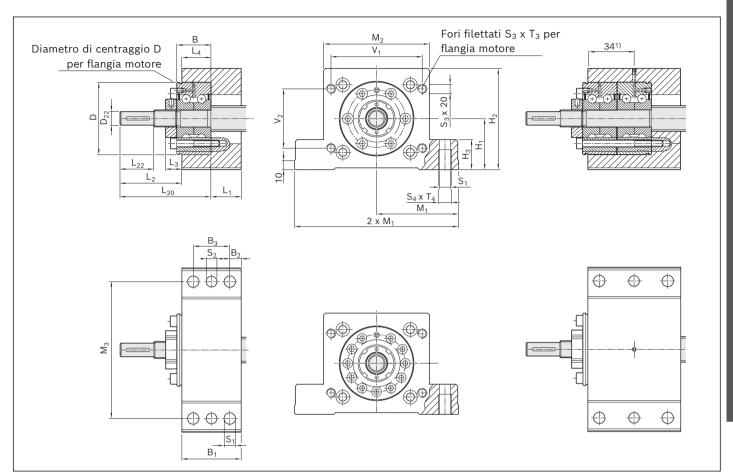
Vincolatura assiale con cuscinetto a doppia corona di sfere a contatto obliquo LGF-B-..., LGF-C-...

L'unità supporto cuscinetti di vincolo è composta da:

- supporto di precisione in acciaio con superfici laterali di riferimento su ambo i lati
- cuscinetto a doppia corona di sfere a contatto obliquo LGF...
- ghiera a tacche NMZ


La ghiera a tacche viene fornita a parte.

È obbligatoria una progettazione tecnica a parte per il rilevamento dei valori limite per tutti gli accessori (ad es. unità supporto cuscinetti di vincolo, gruppo cuscinetti di vincolo, etc.).



Misure	Supporto ritto		a doppia coro		ere a co	ontatto		Ghiera	a tacche	Massa
	completo		rico (assiale)	` ′			Sigla		Sigla	completo
	Numero di	dyn. C	stat. C ₀					M _A		
d ₀ x P	identificazione	(N)	(N)	d	D	В		(Nm)		(kg)
20x5/10/20/40	R1595 012 20	17 000	24 700	12	55	25	LGF-B-1255	8	NMZ 12x1	3,37
25x5/10/25	R1595 017 20	18 800	31 000	17	62	25	LGF-B-1762	15	NMZ 17x1	3,38
32x5/10/20/32/64	R1595 020 20	26 000	47 000	20	68	28	LGF-B-2068	18	NMZ 20x1	4,31
40x5	R1595 030 20	29 000	64 000	30	80	28	LGF-B-3080	32	NMZ 30x1,5	6,31
40x10/12/16/20/25/30/40	R1595 330 20	47 500	127 000	30	80	56	LGF-C-3080	32	NMZ 30x1,5	7,53

Estremità della vite di forma 81, 81A, 82, 82A adatta per attacco motore.

Per ulteriori informazioni sul cuscinetto doppio LGF si rimanda a Pagina 114.

Grandezza	(mm	1)																						
d_0xP																								
	B ₁	B ₂	B ₃	L_1	L ₂	L ₃	L ₄	L ₂₀	L ₂₂	D ₂₂	M ₁	M_2	Мз	H ₁	H ₂	H ₃	S ₁	S ₂	S ₃	S ₄	T ₃	T ₄	V ₁	V_2
											±0,015			±0,015										
20x5/10/20/40	60	10,0	40	42	42	15	18	60	25	10	72,5	80	120	41	81	28	10,5	9,7	M8	M12	20	20	66	50
25x5/10/25	60	10,0	40	42	57	17	18	75	30	15	72,5	80	120	41	81	28	10,5	9,7	M8	M12	20	20	66	50
32x5/10/20/32/64	60	10,0	40	40	58	18	20	78	35	16	72,5	103	120	46	91	28	10,5	9,7	M8	M12	20	20	90	46
40x5	65	12,5	40	45	73	20	20	93	50	25	90,0	116	150	56	111	33	12,5	11,7	M10	M14	20	22	100	65
40x10/12/16/20/25/30/40	85	12,5	60	37	82	20	48	130	50	25	90,0	116	150	56	111	33	12,5	11,7	M10	M14	20	22	100	65

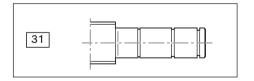
¹⁾ solo con codice materiale R1595 330 20

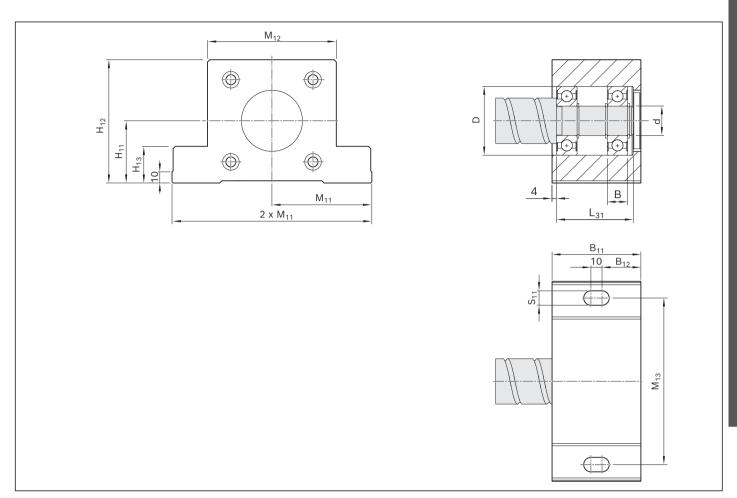
Unità supporto cuscinetti di vincolo SES-L, acciaio

Vincolatura libera assialmente con cuscinetto radiale rigido a sfere DIN 625

L'unità supporto cuscinetti di vincolo è composta da:

- supporto di precisione in acciaio con superfici laterali di riferimento su ambo i lati
- cuscinetti radiali rigidi a sfere **DIN 625**
- anello di sicurezza DIN 471
- coperchio


Tutte le parti vengono fornite separatamente.

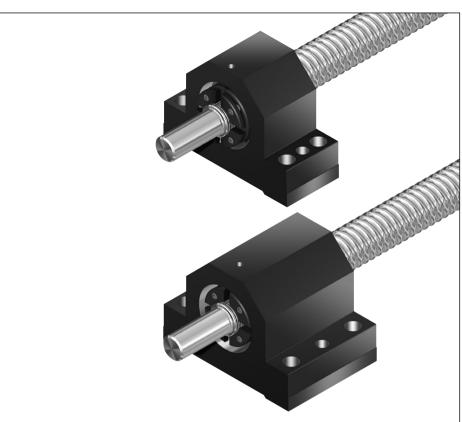

È obbligatoria una progettazione tecnica a parte per il rilevamento dei valori limite per tutti gli accessori (ad es. unità supporto cuscinetti di vincolo, gruppo cuscinetti di vincolo, etc.).

Misure	Unità supporto completa	Cuscinetto r Fattori di car	_			ndo DI	N 625 Sigla DIN 625	Anello di sicurezza secondo DIN 471	Massa completa
	Numero di	dyn. C	stat. C ₀						
d ₀ x P	identificazione	(N)	(N)	d	D	В			(kg)
20x5/10/20/40	R1595 615 00	7 800	3 250	15	35	11	6202.2RS	15x1	3,26
25x5/10/25	R1595 617 00	9 500	4 150	17	40	12	6203.2RS	17x1	3,39
32x5/10/20/32/64	R1595 620 00	12 700	5 700	20	47	14	6204.2RS	20x1,2	4,74
40x5/10/12/16/20/25/30/40	R1595 630 00	19 300	9 800	30	62	16	6206.2RS	30x1,5	7,30

Adatti per viti con estremità: forma

Grandezza	(mm)									
	B ₁₁	B ₁₂	L ₃₁	M ₁₁	M ₁₂	M ₁₃	H ₁₁	H ₁₂	H ₁₃	S ₁₁
$d_0 \times P$				±0,015			±0,015			
20x5/10/20/40	60	25	47	72,5	80	120	41	81	28	10,5
25x5/10/25	64	27	51	72,5	80	120	41	81	28	10,5
32x5/10/20/32/64	70	30	60	72,5	103	120	46	91	28	10,5
40x5/10/12/16/20/25/30/40	80	35	68	90,0	116	150	56	111	33	13,0

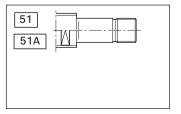
Unità supporto cuscinetti di vincolo SEB-F

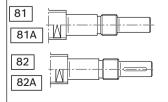

Vincolatura assiale con cuscinetto a doppia corona di sfere a contatto obliquo LGN-B-... LGN-C-...

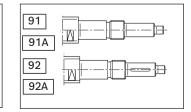
L'unità supporto cuscinetti di vincolo è composta da:

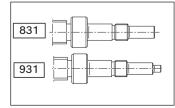
- supporto di precisione in acciaio con superfici laterali di riferimento
- cuscinetto a doppia corona di sfere a contatto obliquo LGN
- ghiera a tacche NMA o NMZ
- anello filettato GWR

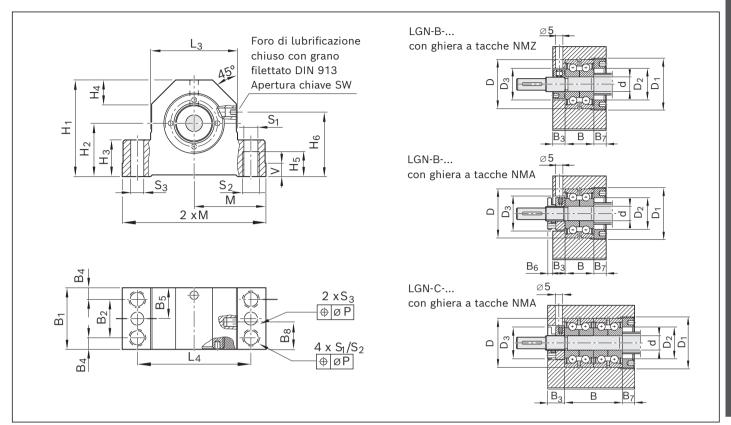
La ghiera a tacche viene fornita a parte.


È obbligatoria una progettazione tecnica a parte per il rilevamento dei valori limite per tutti gli accessori (ad es. unità supporto cuscinetti di vincolo, gruppo cuscinetti di vincolo, etc.).



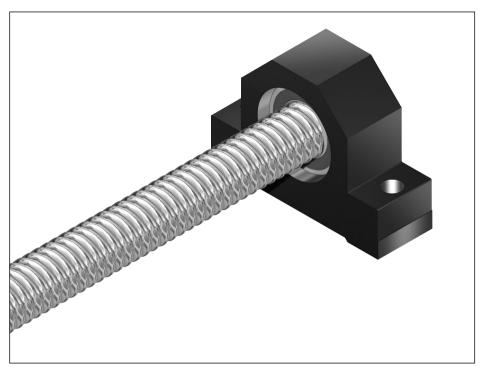

Misure	Unità supporto	Cuscinette	o di vincolo ass	iale				Ghiera a	tacche	Massa
	completa	Fattori di d	carico (assiale)	(mm)			Sigla		Sigla	completa
	Numero di	dyn. C	stat. C ₀					M _A		
d ₀ x P	identificazione	(N)	(N)	d	D	В		(Nm)		(kg)
6 x 1/2	R1591 106 00	6 900	8 500	6	24	15	LGN-B-0624	2,0	NMZ 6x0,5	0,38
8 x 1/2/2,5/5	R1591 106 00	6 900	8 500	6	24	15	LGN-B-0624	2,0	NMZ 6x0,5	0,38
12 x 2/5/10	R1591 106 20	6 900	8 500	6	24	15	LGN-B-0624	2,0	NMZ 6x0,5	0,38
16 x 5/10/16	R1591 110 20	13 400	18 800	10	34	20	LGN-B-1034	6,0	NMZ 10x1	0,87
20 x 5/10/20/40	R1591 112 20	17 000	24 700	12	42	25	LGN-B-1242	8,0	NMZ 12x1	1,12
25 x 5/10/25	R1591 117 20	18 800	31 000	17	47	25	LGN-B-1747	15,0	NMZ 17x1	1,65
25 x 5/10/25	R1591 117 30	18 800	31 000	17	47	25	LGN-B-1747	15,0	NMA 17x1	1,69
32 x 5/10/20/32/64	R1591 120 20	26 000	47 000	20	52	28	LGN-B-2052	18,0	NMZ 20x1	1,93
32 x 5/10/20/32/64	R1591 120 30	26 000	47 000	20	52	28	LGN-B-2052	18,0	NMA 20x1	2,03
40 x 10/12/16/20/25/30/40	R1591 225 30	44 500	111 000	25	57	56	LGN-C-2557	25,0	NMA 25x1,5	5,13
40 x 5	R1591 130 20	29 000	64 000	30	62	28	LGN-B-3062	32,0	NMZ 30x1,5	2,64
40 x 5	R1591 130 30	29 000	64 000	30	62	28	LGN-B-3062	32,0	NMA 30x1,5	2,77
50 x 5	R1591 135 30	41 000	89 000	35	72	34	LGN-B-3572	40,0	NMA 35x1,5	4,66
50 x 10/12/16/20/25/30/40	R1591 230 30	47 500	127 000	30	62	56	LGN-C-3062	32,0	NMA 30x1,5	7,04
63 x 10/20/40	R1591 140 30	72 000	149 000	40	90	46	LGN-A-4090	55,0	NMA 40x1,5	10,49
80 x 10/20/40	R1591 150 30	113 000	250 000	50	110	54	LGN-A-50110	85,0	NMA 50x1,5	15,61


Adatti per viti con estremità: forma


Per viti 6 x 1/2: forma 831 Per viti 8 x 1/2/2,5/5: forma 831, 931

Grandezza	(mm)																						
	М	L ₃	L ₄	H ₁	H ₂	Н3	H ₄	H ₅	H ₆	B ₁	B ₂	B ₃	B ₄	B ₅	B ₆	B ₇	B ₈	٧	$S_1 S_2$	S ₃	SW	D ₁	D ₂ [D ₃ P
d ₀ x P	js7				±0,02														H12					
6 x 1/2	31,0	38	50	34	18	13	8	9	22	32	16	8,5	8,0	16,0	_	8,5	16,0	6	5,3 M6	3,7	3	M26x1,5	16,5	18 0,10
8 x 1/2/2,5/5	31,0	38	50	34	18	13	8	9	22	32	16	8,5	8,0	16,0	_	8,5	16,0	6	5,3 M6	3,7	3	M26x1,5	16,5	18 0,10
12 x 2/5/10	31,0	38	50	41	22	13	8	9	22	32	16	8,5	8,0	16,0	_	8,5	16,0	6	5,3 M6	3,7	3	M26x1,5	16,5	18 0,10
16 x 5/10/16	43,0	52	68	58	32	22	14	15	37	37	23	8,5	7,0	18,5	_	8,5	18,5	8	8,4 M10	7,7	4	M36x1,5	22,0	27 0,15
20 x 5/10/20/40	47,0	60	77	64	34	22	16	15	40	42	25	8,5	8,5	21,0	_	8,5	21,0	8	8,4 M10	7,7	4	M45x1,5	28,0	32 0,15
25 x 5/10/25	54,0	66	88	72	39	27	18	18	45	46	29	10,5	8,5	23,0	_	10,5	23,0	10	10,5 M12	9,7	4	M50x1,5	31,0	36 0,20
25 x 5/10/25	54,0	66	88	72	39	27	18	18	45	46	29	10,5	8,5	23,0	7,5	10,5	23,0	10	10,5 M12	9,7	4	M50x1,5	31,0	36 0,20
32 x 5/10/20/32/64	56,0	70	92	77	42	27	19	18	48	49	29	10,5	10,0	24,5	_	10,5	24,5	10	10,5 M12	9,7	4	M55x1,5	36,0	42 0,20
32 x 5/10/20/32/64	56,0	70	92	77	42	27	19	18	48	49	29	10,5	10,0	24,5	7,5	10,5	24,5	10	10,5 M12	9,7	4	M55x1,5	36,0	42 0,20
40 x 10/12/16/20/25/30/40	63,0	80	105	98	58	32	23	21	64	89	62	20,5	13,5	44,5	_	12,5	54,5	12	12,6 M14	9,7	4	M62x1,5	43,0	48 0,20
40 x 5	63,0	80	105	90	50	32	22	21	56	53	32	12,5	10,5	26,5	_	12,5	26,5	12	12,6 M14	9,7	4	M65x1,5	47,0	53 0,20
40 x 5	63,0	80	105	90	50	32	22	21	56	53	32	12,5	10,5	26,5	7,5	12,5	26,5	12	12,6 M14	9,7	4	M65x1,5	47,0	53 0,20
50 x 5	72,0	92	118	105	58	38	25	22	63	70	43	20,5	13,5	35,0	_	15,5	32,5	12	12,5 M14	9,7	4	M78x2	54,0	60 0,20
50 x 10/12/16/20/25/30/40	72,0	92	118	112	65	38	25	22	70	92	65	20,5	13,5	46,0	_	15,5	57,5	12	12,5 M14	9,7	4	M78x2	54,0	53 0,20
63 x 10/20/40	95,0	130	160	138	73	50	35	22	78	85	58	22,5	13,5	42,5	_	16,5	39,5	16	12,5 M14	9,7	4	M95x2	68,0	72 0,20
80 x 10/20/40	102,5	145	175	165	93	50	40	36	98	98	58	25,5	20,0	49,0	_	18,5	45,5	16	17,3 M20	11,7	4	M115x2	85,0	90 0,20

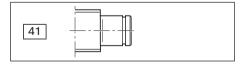
Unità supporto cuscinetti di vincolo SEB-L

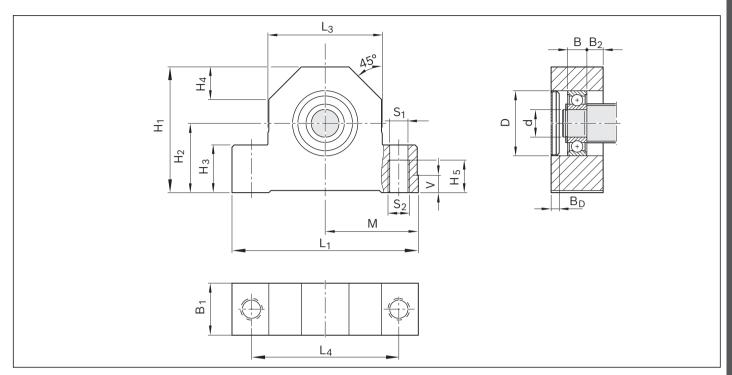

Vincolatura libera assialmente con cuscinetto radiale rigido a sfere DIN 625

L'unità supporto cuscinetti di vincolo è composta da:

- supporto di precisione in acciaio con superficie laterale di riferimento su un lato
- cuscinetti radiali rigidi a sfere **DIN 625**
- anello di sicurezza DIN 471
- coperchio

Tutte le parti vengono fornite separatamente.


È obbligatoria una progettazione tecnica a parte per il rilevamento dei valori limite per tutti gli accessori (ad es. unità supporto cuscinetti di vincolo, gruppo cuscinetti di vincolo, etc.).



Misure	Unità supporto						N 625	Anello di sicurezza	Massa
	completa	Fattori di car	ico (radiale)	(mm)			Sigla	secondo DIN 471	completa
	Numero di	dyn. C	stat. C ₀				DIN 625		
d ₀ x P	identificazione	(N)	(N)	d	D	В			(kg)
8 x 1/2/2,5/5	R1591 605 00	1 900	590	5	16	5	625.2RS	5x0,6	0,14
12 x 2/5/10	R1591 606 20	2 450	900	6	19	6	626.2RS	6x0,7	0,18
16 x 5/10/16	R1591 610 20	6 000	2 240	10	30	9	6200.2RS	10x1	0,54
20 x 5/10/20/40	R1591 612 20	6 950	2 650	12	32	10	6201.2RS	12x1	0,73
25 x 5/10/25	R1591 617 20	9 500	4 150	17	40	12	6203.2RS	17x1	0,96
32 x 5/10/20/32/64	R1591 620 20	12 700	5 700	20	47	14	6204.2RS	20x1,2	1,24
40 x 5	R1591 630 20	19 300	9 800	30	62	16	6206.2RS	30x1,5	1,66
40 x 10/12/16/20/25/30/40	R1591 630 10	19 300	9 800	30	62	16	6206.2RS	30x1,5	1,82
50 x 5 ¹⁾	R1591 635 10	25 500	13 200	35	72	17	6207.2RS	35x1,5	2,66
50 x 10/12/16/20/25/30/40 ¹⁾	R1591 635 20	25 500	13 200	35	72	17	6207.2RS	35x1,5	2,87
63 x 10/20/40 ¹⁾	R1591 650 20	36 500	20 800	50	90	20	6210.2RS	50x2	5,39
80 x 10/20/40 ¹⁾	R1591 660 20	52 000	31 000	60	110	22	6212.2RS	60x2	7,09

¹⁾ senza coperchio

Adatti per viti con estremità di forma

Grandezza	(mm)														
	 L ₁	L ₃	L ₄	H ₁	H ₂	Нз	H_4	H ₅	B ₁	B ₂	М	V	S ₁	S ₂	Coperchio
d ₀ x P					±0,02						js7		H12		B _D
8 x 1/2/2,5/5	62	38	50	34	18	13	11	9	13	4,0	31,0	6	5,3	M6	2,6
12 x 2/5/10	62	38	50	41	22	13	11	9	15	4,5	31,0	6	5,3	M6	2,6
16 x 5/10/16	86	52	68	58	32	22	15	15	24	7,5	43,0	8	8,4	M10	3,8
20 x 5/10/20/40	94	60	77	64	34	22	17	15	26	8,0	47,0	8	8,4	M10	3,8
25 x 5/10/25	108	66	88	72	39	27	19	18	28	8,0	54,0	10	10,5	M12	3,7
32 x 5/10/20/32/64	112	70	92	77	42	27	20	18	34	10,0	56,0	10	10,5	M12	4,8
40 x 5	126	80	105	90	50	32	23	21	38	11,0	63,0	12	12,6	M14	4,5
40 x 10/12/16/20/25/30/40	126	80	105	98	58	32	23	21	38	11,0	63,0	12	12,6	M14	4,5
50 x 5	144	92	118	105	58	38	25	22	41	12,0	72,0	12	12,5	M14	_
50 x 10/12/16/20/25/30/40	144	92	118	112	65	38	25	22	41	12,0	72,0	12	12,5	M14	_
63 x 10/20/40	190	130	160	138	73	50	35	22	46	13,0	95,0	16	12,5	M14	_
80 x 10/20/40	205	145	175	165	93	50	40	36	50	14,0	102,5	16	17,3	M20	_

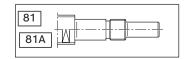
Gruppo cuscinetti flangiati SEE-F-Z

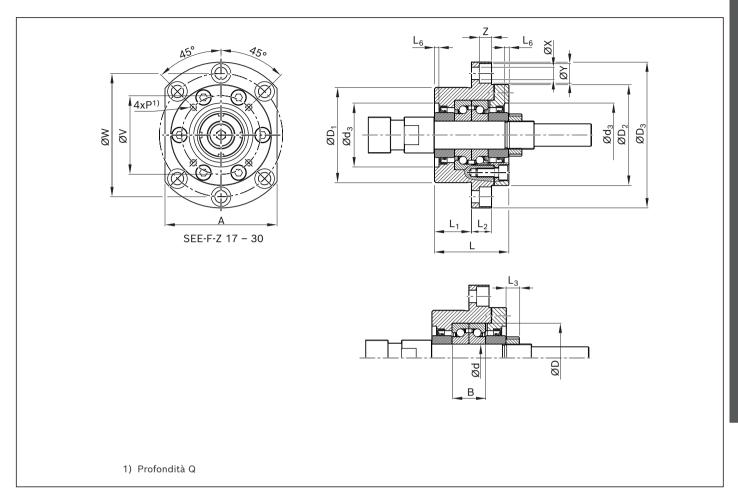
Vincolatura assiale con cuscinetto a doppia corona di sfere a contatto obliquo

Il gruppo cuscinetti di vincolo è composto da:

- supporto di precisione flangiato in acciaio
- 2 cuscinetti a doppia corona di sfere a contatto obliquo
- ghiera a tacche
- coperchio
- tenuta radiale sull'albero

È obbligatoria una progettazione tecnica a parte per il rilevamento dei valori limite per tutti gli accessori (ad es. unità supporto cuscinetti di vincolo, gruppo cuscinetti di vincolo, etc.).




Misure	Unità supporto	Designazione	Designazione Cuscinetto a doppia corona di sfere a contatto obliquo								
	completa		dyn. C	stat. C ₀	carico assiale	(mm)					
d_0					max.	d	D	В	M _A		
	Numero di identificazione		(N)	(N)	(N)				(Nm)		
25	R159751700	SEE-F-Z 17	25 900	40 500	32 000	17	47	30	15		
32	R159752000	SEE-F-Z 20	25 900	40 500	32 000	20	47	30	18		
40	R159752500	SEE-F-Z 25	29 900	58 500	46 400	25	62	30	25		
40	R159753000	SEE-F-Z 30	29 900	58 500	46 400	30	62	30	32		

Forma	Versione ¹⁾	Gra														
		(,,,,,,	1)								Foro di	centraggio	Foro esa	agonale	Filetta	atura
		d ₀	P	L _{jf}	D ₁ h6	L ₁	D ₂ h7	L ₂	G ₁	LG ₁	Z	t _Z	S	ts	G	tg
81/81A	176	25	5/10/25	110,0	17	58,0	12	29,0	M17x1	23,0	M4	10,0	4	4	M5	8
	207	32	5/10/20/32/64	120,0	20	58,0	15	39,0	M20x1	23,0	M5	12,0	4	4	M6	9
	252	40	5/10/12/16/20/25/30/40	140,0	25	63,0	20	51,0	M25x1,5	26,0	M6	16,0	5	5	M8	12
	311	40	5/10/12/16/20/25/30/40	150,0	30	63,0	25	61,0	M30x1,5	26,0	M10	22,0	8	8	M10	15

¹⁾ Con la versione è possibile stabilire in modo univoco la correlazione tra le estremità delle viti e i gruppi cuscinetti di vincolo.

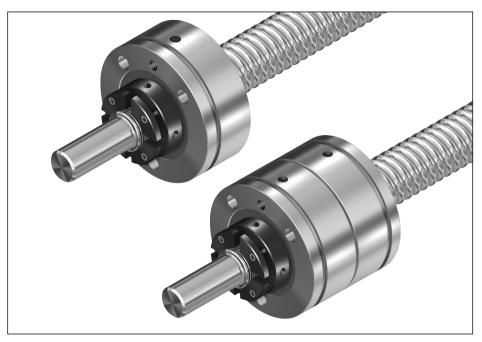
Adatti per viti con estremità: forma

Grandezza													Massa completa					
																		m
d_0	D ₁	D_2	D ₃	L	L ₁	L ₂	L ₃	А	d ₃	L ₆	W	X	Υ	Z	V	Р	Q	(kg)
	g6								Н8									
25	70	72	106	60	32	15	10	80	45	3	88	9	14,0	8,5	58	M5	10	1,84
32	70	72	106	60	32	15	10	80	45	3	88	9	14,0	8,5	58	M5	10	1,81
40	85	90	130	66	33	18	12	100	57	4	110	11	17,5	11,0	70	M6	12	3,13
40	85	90	130	66	33	18	12	100	57	4	110	11	17,5	11,0	70	M6	12	3,03

Versione ¹⁾	Aper chia SW		I _{SW}
176	19	10	10,5
207	24	15	10,5
252	30	15	12,5
311	30	15	45,0

Gruppo cuscinetti di vincolo LAF

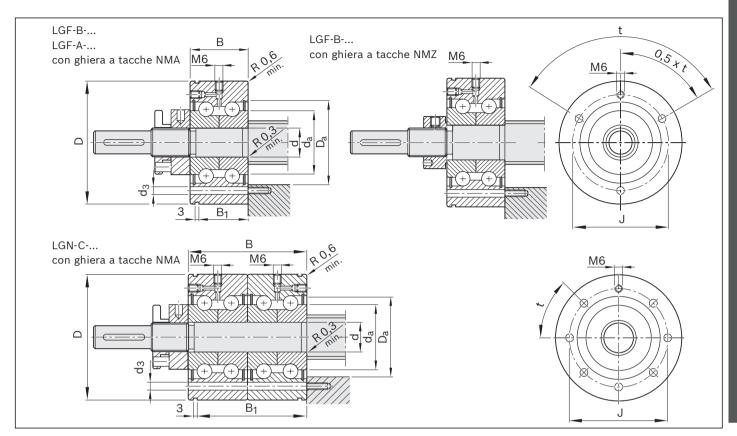
Vincolatura con cuscinetto di vincolo assiale a doppia corona di sfere a contatto obliquo LGF Sopporta i carichi assiali nei due sensi, fissaggio con viti, tipo LGF-B-...


LGF-A-...

Sopporta i carichi assiali nei due sensi, fissaggio con viti, tipo LGF-C-...

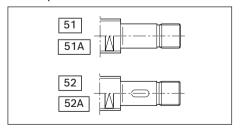
La vincolatura assiale comprende:

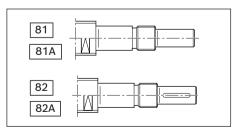
- cuscinetto a doppia corona di sfere contatto obliquo LGF
- ghiera a tacche NMA..., NMZ...

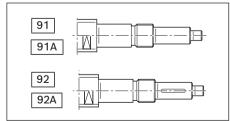

È obbligatoria una progettazione tecnica a parte per il rilevamento dei valori limite per tutti gli accessori (ad es. unità supporto cuscinetti di vincolo, gruppo cuscinetti di vincolo, etc.).

Misure	Gruppo	Singoli componenti								
	numero di identificazione	cuscinetti di	vincolo assiale a doppia	Ghiera a tacc	he	completa				
	cuscinetti di vincolo	corona di sfe	ere a contatto obliquo							
d ₀ x P	assiale a doppia corona di sfere a contatto obliguo	Sigla	Numero di identificazione	Sigla	Numero di identificazione	(kg)				
	con ghiera a tacche									
20 x 5/10/20/40	R1590 012 00	LGF-B-1255	R3414 009 06	NMZ 12x1	R3446 003 04	0,385				
25 x 5/10/25	R1590 017 00	LGF-B-1762	R3414 010 06	NMZ 17x1	R3446 004 04	0,485				
	R1590 017 30]		NMA 17x1	R3446 014 04	0,520				
32 x 5/10/20/32/64	R1590 020 00	LGF-B-2068	R3414 001 06	NMZ 20x1	R3446 005 04	0,645				
	R1590 020 30			NMA 20x1	R3446 015 04	0,740				
40 x 5	R1590 030 00	LGF-B-3080	R3414 011 06	NMZ 30x1,5	R3446 006 04	0,855				
	R1590 030 30			NMA 30x1,5	R3446 016 04	0,980				
40 x 10/12/16/20/25/30/40	R1590 325 30	LGF-C-2575	R3414 015 06	NMA 25x1,5	R3446 011 04	1,600				
50 x 5	R1590 035 30	LGF-B-3590	R3414 026 06	NMA 35x1,5	R3446 012 04	1,360				
50 x 10/12/16/20/25/30/40	R1590 330 30	LGF-C-3080	R3414 027 06	NMA 30x1,5	R3446 016 04	1,760				
63 x 10/20/40	R1590 040 30	LGF-B-40115	R3414 028 06	NMA 40x1,5	R3446 018 04	2,500				
80 x 10/20/40	R1590 050 30	LGF-A-50140	R3414 029 06	NMA 50x1,5	R3446 019 04	5,130				

Grandezza	Fattori di c	arico ¹⁾	Momento d'attrito del cuscinetto con	Rigidezza (assiale)	Rigidezza al momento di ribaltamento	Numero di giri limite (grasso)
			disco di tenuta	R _{fb}		(8)
d ₀ x P	dyn. C	stat. C ₀	M_RL	(N/µm)	R _{kl}	n _G
	(N)	(N)	(Nm)		(Nm/mrad)	(min ⁻¹)
20 x 5/10/20/40	17 000	24 700	0,16	375	50	3 800
25 x 5/10/25	18 800	31 000	0,24	450	80	3 300
32 x 5/10/20/32/64	26 000	47 000	0,30	650	140	3 000
40 x 5	29 000	64 000	0,50	850	300	2 200
40 x 10/12/16/20/25/30/40	44 500	111 000	0,60	1 300	450	2 600
50 x 5	41 000	89 000	0,60	900	400	2 000
50 x 10/12/16/20/25/30/40	47 500	127 000	0,75	1 500	620	2 200
63 x 10/20/40	72 000	149 000	1,30	1 200	750	1 600
80 x 10/20/40	113 000	250 000	2,60	1 400	1 500	1 200


¹⁾ Carico del cuscinetto vedi Pagina 187



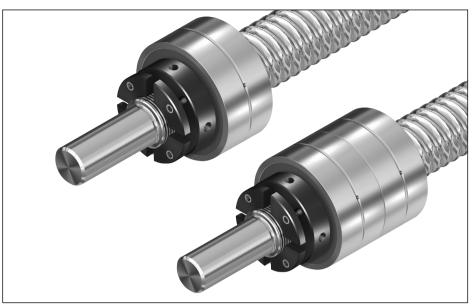

Grandezza	Dimensioni		Dimen	sioni pe	er l'insta	llazione	(mm)	Fori per l'installazione				
	d	D	В	B ₁	J		D_a		d_{a}	Numero	d ₃	t
d ₀ x P						min	max	min	max	minimo ¹⁾	(mm)	(°)
20 x 5/10/20/40	12 -0,010	55 _{-0,013}	25 -0,25	17	42	30	33	16	29	3	6,8	120
25 x 5/10/25	17 -0,010	62 -0,013	25 -0,25	17	48	34	37	23	33	3	6,8	120
32 x 5/10/20/32/64	20 -0,010	68 -0,013	28 -0,25	19	53	40	43	25	39	4	6,8	90
40 x 5	30 -0,010	80 -0,013	28 -0,25	19	63	50	53	40	49	6	6,8	60
40 x 10/12/16/20/25/30/40	25 -0,005	75 _{-0,010}	56 _{-0,50}	47	58	45	48	32	44	7	6,5	45
50 x 5	35 _{-0,010}	90 -0,015	34 -0,25	25	75	59	62	45	58	4	8,8	90
50 x 10/12/16/20/25/30/40	30 -0,005	80 -0,010	56 _{-0,50}	47	63	50	53	40	49	11	6,8	30
63 x 10/20/40	40 -0,010	115 -0,015	46 -0,25	36	94	71	80	56	70	12	8,5	30
80 x 10/20/40	50 _{-0,005}	140 -0,010	54 _{-0,25}	45	113	88	100	63	87	12	10,5	30

¹⁾ Il numero dei fori per l'installazione può variare verso l'alto

Adatti per viti con estremità di forma

Gruppo cuscinetti di vincolo LAN

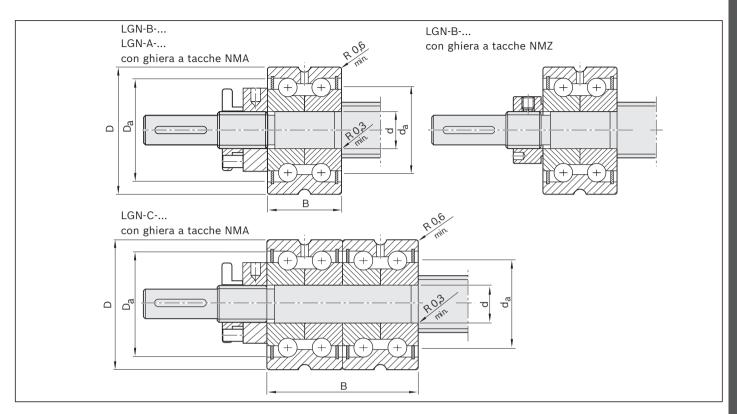
Vincolatura assiale con cuscinetto a doppia corona di sfere a contatto obliquo LGN Supporta carichi assiali nei due sensi LGN-B-... serie


LGN-A-...

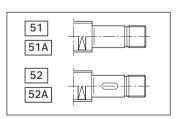
Nei due sensi, in coppia, serie LGN-C-...

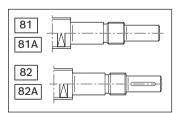
La vincolatura assiale comprende:

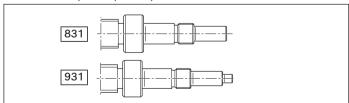
- cuscinetto a doppia corona di sfere a contatto obliquo LGN
- ghiera a tacche NMA..., NMZ...

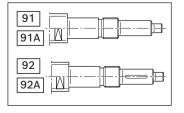

È obbligatoria una progettazione tecnica a parte per il rilevamento dei valori limite per tutti gli accessori (ad es. unità supporto cuscinetti di vincolo, gruppo cuscinetti di vincolo, etc.).

Misure	Gruppo	Singoli componenti								
d ₀ x P	numero di identificazione cuscinetti di vincolo assiale a doppia corona di		vincolo assiale a doppia re a contatto obliquo	Ghiera a taco	che	completa				
40 X .	sfere a contatto obliquo con ghiera a tacche	Sigla	Numero di identificazione	Sigla	Numero di identificazione	(kg)				
6 x 1/2	R1590 106 00	LGN-B-0624	R3414 002 06	NMZ 6x0,5	R3446 001 04	0,040				
8 x 1/2/2,5/5	R1590 106 00	LGN-B-0624	R3414 002 06	NMZ 6x0,5	R3446 001 04	0,040				
12 x 2/5/10	R1590 106 00	LGN-B-0624	R3414 002 06	NMZ 6x0,5	R3446 001 04	0,040				
16 x 5/10/16	R1590 110 00	LGN-B-1034	R3414 003 06	NMZ 10x1	R3446 002 04	0,110				
20 x 5/10/20/40	R1590 112 00	LGN-B-1242	R3414 004 06	NMZ 12x1	R3446 003 04	0,215				
25 x 5/10/25	R1590 117 00	LGN-B-1747	R3414 005 06	NMZ 17x1	R3446 004 04	0,248				
	R1590 117 30]		NMA 17x1	R3446 014 04	0,290				
32 x 5/10/20/32/64	R1590 120 00	LGN-B-2052	R3414 006 06	NMZ 20x1	R3446 005 04	0,345				
	R1590 120 30]		NMA 20x1	R3446 015 04	0,440				
40 x 5	R1590 130 00	LGN-B-3062	R3414 007 06	NMZ 30x1,5	R3446 006 04	0,465				
	R1590 130 30			NMA 30x1,5	R3446 016 04	0,590				
40 x 10/12/16/20/25/30/40	R1590 225 30	LGN-C-2557	R3414 014 06	NMA 25x1,5	R3446 011 04	0,840				
50 x 5	R1590 135 30	LGN-B-3572	R3414 022 06	NMA 35x1,5	R3446 012 04	0,740				
50 x 10/12/16/20/25/30/40	R1590 230 30	LGN-C-3062	R3414 023 06	NMA 30x1,5	R3446 016 04	0,980				
63 x 10/20/40	R1590 140 30	LGN-A-4090	R3414 024 06	NMA 40x1,5	R3446 018 04	1,250				
80 x 10/20/40	R1590 150 30	LGN-A-50110	R3414 025 06	NMA 50x1,5	R3446 019 04	2,930				

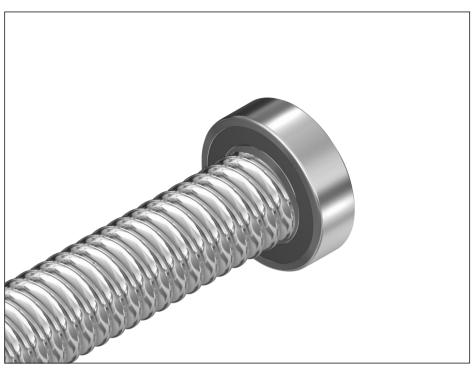

Grandezza	Fattori d	i carico ¹⁾	Momento d'attrito del cuscinetto	Rigidezza (assiale)	Rigidezza al momento	
d ₀ x P	dyn. C	stat. C ₀	con disco di tenuta M _{RL} (Nm)	R _{fb} N/µm	di ribaltamento R _{kl} (Nm/mrad)	<u>~</u>
6 x 1/2	6 900	8 500	0,04	200	8	6 800
8 x 1/2/2,5/5	6 900	8 500	0,04	200	8	6 800
12 x 2/5/10	6 900	8 500	0,04	200	8	6 800
16 x 5/10/16	13 400	18 800	0,12	325	25	4 600
20 x 5/10/20/40	17 000	24 700	0,16	375	50	3 800
25 x 5/10/25	18 800	31 000	0,24	450	80	3 300
32 x 5/10/20/32/64	26 000	47 000	0,30	650	140	3 000
40 x 5	29 000	64 000	0,50	850	300	2 200
40 x 10/12/16/20/25/30/40	44 500	111 000	0,60	1 300	450	2 600
50 x 5	41 000	89 000	0,60	900	400	2 000
50 x 10/12/16/20/25/30/40	47 500	127 000	0,75	1 500	620	2 200
63 x 10/20/40	72 000	149 000	1,30	1 200	750	1 600
80 x 10/20/40	113 000	250 000	2,60	1 400	1 500	1 200


¹⁾ Carico del cuscinetto vedi Pagina 187


Grandezza	(mm)			Dimensioni per l'installazione (mm)							
	d	D	В		D_a		da				
d ₀ x P				min	max	min	max				
6 x 1/2	6_0,010	24 -0,010	15 _{-0,25}	16	19	9	15_				
8 x 1/2/2,5/5	6 -0,010		15 _{-0,25}	16	19	9	15				
12 x 2/5/10	6-0,010		15 _{-0,25}	16	19	9	15				
16 x 5/10/16	10 -0,010	34 -0,010	20_0,25	25	28	14	24				
20 x 5/10/20/40	12 -0,010	42 -0,010	25 _{-0,25}	30	33	16	29				
25 x 5/10/25	17 -0,010	47 -0,010	25-0,25	34	37	23	33				
32 x 5/10/20/32/64	20 -0,010	52 _{-0,010}		40	43	25	39				
40 x 5	30 -0,010	62 -0,010	28-0,25	50	53	40	49				
40 x 10/12/16/20/25/30/40		57 _{-0,010}			48	32	44				
50 x 5	35 -0,010	72 -0,011	$34_{-0,25}$	59	62	45	58				
50 x 10/12/16/20/25/30/40		62 -0,010	56-0,50	50	53	40	49				
63 x 10/20/40	40 -0,005	90 -0,010	46-0,25	71	80	56	70				
80 x 10/20/40	50 -0,005	110 -0,010	54-0,25	88	100	63	87				

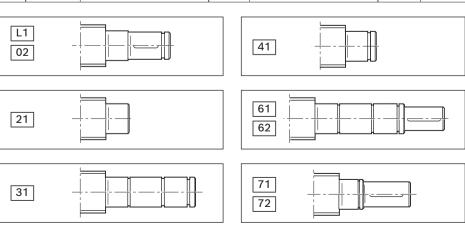

Adatti per viti con estremità: forma

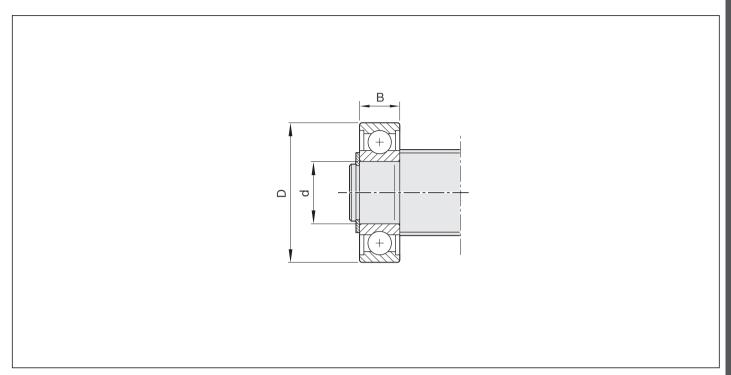
Per viti 8 x 2,5: forma 831, 931 Per viti 6 x 1; 6 x 2; 8 x 1; 8 x 2: forma 831


Gruppo cuscinetti di vincolo LAD

Vincolatura libera assialmente con cuscinetto radiale rigido a sfere

La vincolatura libera assialmente comprende:

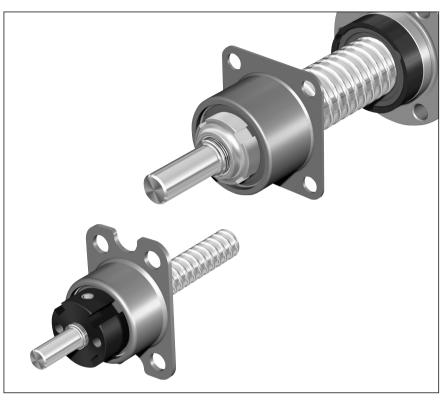

- cuscinetto radiale rigido a sfere DIN 625... .2RS
- anello di sicurezza DIN 471 (2 pezzi)


È obbligatoria una progettazione tecnica a parte per il rilevamento dei valori limite per tutti gli accessori (ad es. unità supporto cuscinetti di vincolo, gruppo cuscinetti di vincolo, etc.).

Misure	Gruppo cuscinetti radiali	Singoli cor	Singoli componenti						
	rigidi a sfere con anello	cuscinetti ı	radiali rigidi a sfere	anello c	di sicurezza DIN 471				
	di sicurezza Numero di	DIN 625				dyn. C	stat. C ₀		
d ₀ x P	identificazione	Sigla	Numero di identificazione	Sigla	Numero di identificazione	(N)	(N)		
8 x 1/2/2,5/5	R1590 605 00	625.2RS	R3414 048 00	5x0,6	R3410 742 00	1 140	380		
12 x 2/5/10	R1590 606 00	626.2RS	R3414 043 00	6x0,7	R3410 736 00	2 450	900		
16 x 5/10/16	R1590 610 00	6200.2RS	R3414 049 00	10x1	R3410 745 00	6 000	2 240		
20 x 5/10/20/40	R1590 612 00	6201.2RS	R3414 042 00	12x1	R3410 712 00	6 950	2 650		
	R1590 615 00	6202.2RS	R3414 074 00	15x1	R3410 748 00	7 800	3 250		
25 x 5/10/25	R1590 617 00	6203.2RS	R3414 050 00	17x1	R3410 749 00	9 500	4 150		
32 x 5/10/20/32/64	R1590 620 00	6204.2RS	R3414 038 00	20x1,2	R3410 735 00	12 700	5 700		
	R1590 625 00	6205.2RS	R3414 063 00	25x1,2	R3410 750 00	14 300	6 950		
40 x 5/10/12/16/20/25/30/40	R1590 630 00	6206.2RS	R3414 051 00	30x1,5	R3410 724 00	19 300	9 800		
50 x 5/10/12/16/20/25/30/40	R1590 635 00	6207.2RS	R3414 075 00	35x1,5	R3410 725 00	25 500	13 200		
63 x 10/20/40	R1590 650 00	6210.2RS	R3414 077 00	50x2	R3410 727 00	36 500	20 800		
80 x 10/20/40	R1590 660 00	6212.2RS	R3414 078 00	60x2	R3410 764 00	52 000	31 000		

Adatti per viti con estremità di forma Per viti 8 x 1; 8 x 2: forma 41

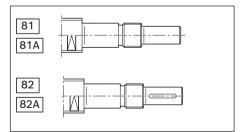
Grandezza	(mm)			Massa completa
d ₀ x P	d	D	В	(kg)
8 x 1/2/2,5/5	5	16	5	0,005
12 x 2/5/10	6	19	6	0,008
16 x 5/10/16	10	30	9	0,030
20 x 5/10/20/40	12	32	10	0,035
	15	35	11	0,043
25 x 5/10/25	17	40	12	0,064
32 x 5/10/20/32/64	20	47	14	0,106
	25	52	15	0,125
40 x 5/10/12/16/20/25/30/40	30	62	16	0,195
50 x 5/10/12/16/20/25/30/40	35	72	17	0,288
63 x 10/20/40	50	90	20	0,453
80 x 10/20/40	60	110	22	0,783

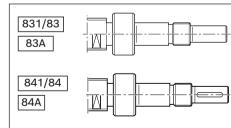

Gruppo cuscinetti di vincolo LAL

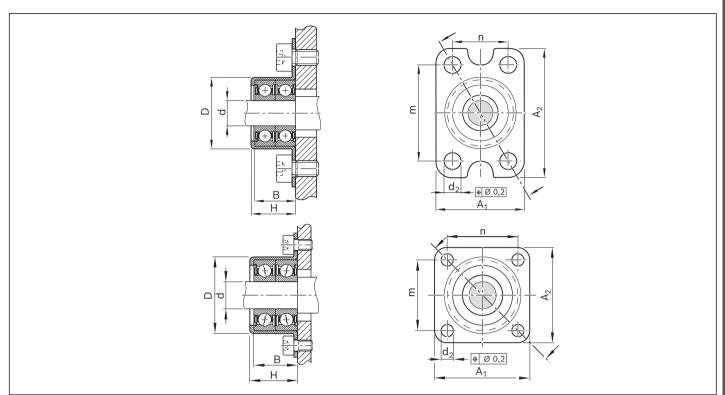
Vincolatura assiale con cuscinetto a doppia corona di sfere a contatto obliquo LGL

Supporta carichi assiali nei due sensi, fissaggio con viti, per costruzioni convenienti La vincolatura assiale comprende:

- cuscinetto a doppia corona di sfere a contatto obliquo LGL
- ghiera a tacche NMG..., NMZ...


È obbligatoria una progettazione tecnica a parte per il rilevamento dei valori limite per tutti gli accessori (ad es. unità supporto cuscinetti di vincolo, gruppo cuscinetti di vincolo, etc.).




Grandezza	Gruppo	Singoli com	Singoli componenti							
	cuscinetti di vincolo assiale a	cuscinetti di	vincolo assiale a doppia			Ghiera a tacche				
	doppia corona di sfere a contatto	corona di sfe	ere a contatto obliquo	Fattori d	i carico ¹⁾					
	obliquo con ghiera a tacche			dyn. C	stat. C ₀					
d ₀ x P	Numero di identificazione	Sigle	Numero di identificazione	(N)	(N)	Sigla	Numero di identificazione			
6 x 1/2	R1590 406 00	LGL-D-0624	R3414 038 06	1 340	1 250	NMZ 6x0,5	R3446 001 04			
8 x 1/2/2,5/5	R1590 406 00	LGL-D-0624	R3414 038 06	1 340	1 250	NMZ 6x0,5	R3446 001 04			
12 x 2/5/10	R1590 406 00	LGL-D-0624	R3414 038 06	1 340	1 250	NMZ 6x0,5	R3446 001 04			
12 x 5/10	R1590 412 00	LGL-A-1244	R3414 040 06	13 200	17 900	NMG 12x1	R3446 002 02			
16 x 5/10	R1590 412 00	LGL-A-1244	R3414 040 06	13 200	17 900	NMG 12x1	R3446 002 02			
20 x 5	R1590 412 00	LGL-A-1244	R3414 040 06	13 200	17 900	NMG 12x1	R3446 002 02			
25 x 5/10	R1590 415 00	LGL-A-1547	R3414 041 06	16 400	22 400	NMG 15x1	R3446 011 02			
32 x 5/10	R1590 420 00	LGL-A-2060	R3414 042 06	27 500	40 000	NMG 20x1	R3446 005 02			

¹⁾ Carico del cuscinetto vedi Pagina 187

Adatti per viti con estremità: forma

Grandezza	(mm)									Massa cuscinetto
	d	D	A ₁	A ₂	n	m	Н	В	d ₂	
d ₀ x P		+0,03 -0,01					-0,25			(kg)
6 x 1/2	6	20,50	24	35	15	26	13	12	4,5	0,023
	0	20,50	24						4,5	
8 x 1/2/2,5/5	6	20,50	24	35	15	26	13	12	4,5	0,023
12 x 2/5/10	6	20,50	24	35	15	26	13	12	4,5	0,023
12 x 5/10	12	35,45	44	50	32	38	22	20	6,6	0,120
16 x 5/10	12	35,45	44	50	32	38	22	20	6,6	0,120
20 x 5	12	35,45	44	50	32	38	22	20	6,6	0,120
25 x 5/10	15	38,45	47	51	35	39	24	22	6,6	0,140
32 x 5/10	20	50,45	60	60	47	47	30	28	6,6	0,300

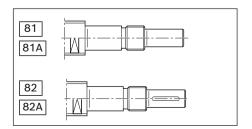
Gruppo cuscinetti di vincolo LAS

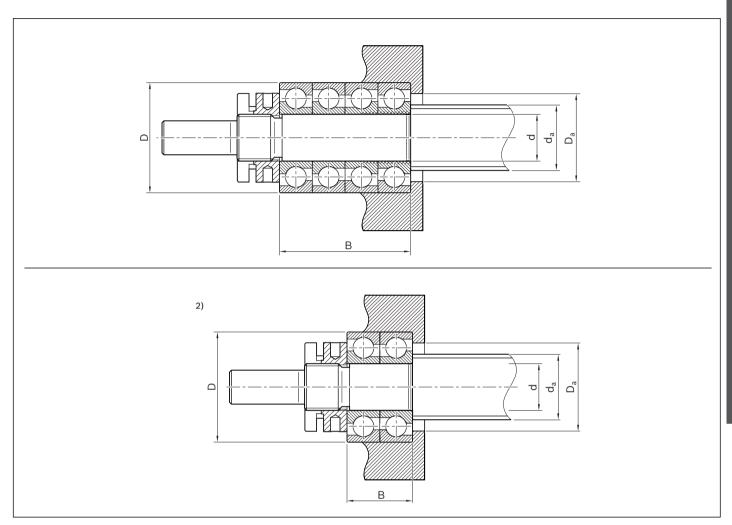
Vincolatura assiale con cuscinetto a doppia corona di sfere a contatto obliquo LGS

Nei due sensi, serie LAS-E

La vincolatura assiale comprende:

- cuscinetto a sfere a contatto obliquo LGS secondo DIN 628 non disponibile singolarmente
- Ghiera a tacche NMA


Una spiegazione tecnica separata per il rilevamento dei valori limite è imperativa per tutti i componenti (ad esempio unità supporto cuscinetti di vincolo, gruppo cuscinetti, ecc.)


Grandezza	LAS	LGS	Ghiera a tacch	ie	Massa completa	С	C ₀	$n_G^{1)}$
d ₀ x P	Numero di	Sigla	Sigle	Numero di	m			
	identificazione			identificazione				
					(kg)	(kN)	(kN)	(min ⁻¹)
16 x 5/10/16	R159A 410 01	LGS-E-1030	NMZ 10x1	R3446 002 04	0,13	20	25,8	13 500
20 x 5/10/20/40	R159A 412 01	LGS-E-1232	NMZ 12x1	R3446 003 04	0,16	21,7	29,2	11 700
25 x 5/10/25 ²⁾	R159A 417 01	LGS-E-1747	NMA 17x1	R3446 014 04	0,29	27,9	31,9	8 550
32 x 5/10/20/32/64	R159A 420 01	LGS-E-2047	NMA 20x1	R3446 015 04	0,57	39,9	63,8	8 550
40 x 5/10/12/16/20/25/30/40	R159A 430 01	LGS-E-3072	NMA 30x1,5	R3446 016 04	1,68	98,3	163,1	5 850
50 x 5/10/12/16/20/25/30/40	R159A 435 01	LGS-E-3580	NMA 35x1,5	R3446 012 04	2,19	109,4	188,4	4 950
63 x 10/20/40	R159A 440 01	LGS-E-4090	NMA 40x1,5	R3446 016 08	2,74	140,8	257,7	4 500
80 x 10/20/40	R159A 450 01	LGS-E-50110	NMA 50x1,5	R3446 019 04	4,95	208,8	392,3	3 600
80 x 10/20/40	R159A 460 01	LGS-E-60130	NMA 60x2	R9130 342 16	7,49	272,5	534,6	3 015

¹⁾ Valori indicativi con carico molto piccolo, buona dissipazione di calore e grassi lubrificanti indicati a bassa consistenza

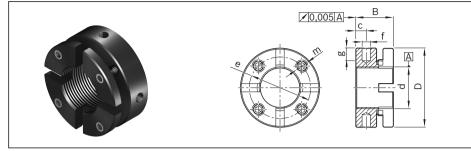
Adatti per viti con estremità: forma

²⁾ Versione 1+1

Grandezza	(mm)						
d ₀ x P	d	D	В		Da		d_{a}
				min.	max.	min.	max.
16 x 5/10/16	10 -0,008	30 -0,009	36	22,9	25,8	14,2	22,0
20 x 5/10/20/40	12 -0,008	32 -0,011	40	25,0	27,8	16,2	24,0
25 x 5/10/25	17 -0,008	47 -0,011	28	36,2	41,4	22,6	35,0
32 x 5/10/20/32/64	20 -0,010		56	36,0	41,0	25,6	35,0
40 x 5/10/12/16/20/25/30/40	30 _{-0,010}	72 -0,013	76	56,5	65,0	37,0	55,5
50 x 5/10/12/16/20/25/30/40	35 -0,012	80 -0,013	84	63,0	71,0	44,0	62,0
63 x 10/20/40	40 -0,012	90 -0,015	92	72,0	81,0	49,0	71,0
80 x 10/20/40	50 -0,012	110 -0,015	108	89,0	100,0	61,0	88,0
80 x 10/20/40	60 -0,015	130 -0,018	124	106,0	118,0	72,0	102,0

Ghiere a tacche NMA, NMZ, NMG per vincolatura assiale

Ghiera a tacche NMA


- Per forti vibrazioni
- Per nuovi progetti

M_A = coppia di serraggio ghiera a tacche

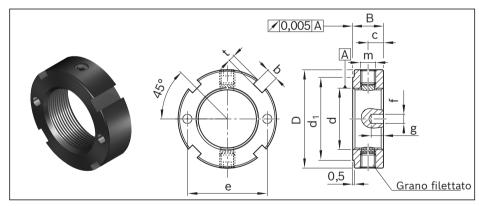
F_{aB} = carico di rottura assiale ghiera

a tacche

 M_{AG} = coppia di serraggio grano filettato

Sigla	Numero di identificazione	(mm)								M_A	F_{aB}	M_{AG}	Massa
		d	D	В	С	m	e	f	g	(Nm)	(kN)	(Nm)	(g)
NMA 15x1	R3446 020 04	M15x1	30	18	5	M5	24	4	5	10	100	3	60
NMA 17x1	R3446 014 04	M17x1	32	18	5	M5	26	4	5	15	120	3	70
NMA 20x1	R3446 015 04	M20x1	38	18	5	M6	31	4	6	18	145	5	130
NMA 25x1,5	R3446 011 04	M25x1,5	45	20	6	M6	38	5	6	25	205	5	160
NMA 30x1,5	R3446 016 04	M30x1,5	52	20	6	M6	45	5	7	32	250	5	200
NMA 35x1,5	R3446 012 04	M35x1,5	58	20	6	M6	51	5	7	40	280	5	230
NMA 40x1,5	R3446 018 04	M40x1,5	65	22	6	M6	58	6	8	55	350	5	300
NMA 45x1,5	R9130 342 15	M45x1,5	70	22	6	M6	63	6	8	65	360	5	340
NMA 50x1,5	R3446 019 04	M50x1,5	75	25	8	M6	68	6	8	85	450	5	430
NMA 60x2	R9130 342 16	M60x2,0	90	26	8	M8	80	6	8	100	550	15	650
NMA 70x2	R9130 342 17	M70x2,0	100	28	9	M8	90	8	10	130	650	15	790
NMA 90x2	R9163 113 51	M90x2,0	130	32	13	M10	118	8	10	200	900	20	1 530

Da NMA 15 a NMA 40 con 4 segmenti Da NMA 45 a NMA 90 con 6 segmenti

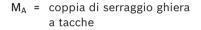

Ghiera a tacche NMZ

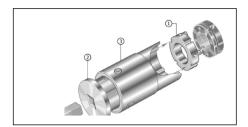
- Per costruzioni attuali
- Per lato di rinvio trasmissione cinghia-puleggia
- Per chiocciole rotanti

M_A = coppia di serraggio ghiera a tacche

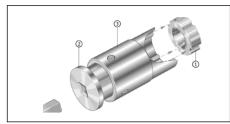
F_{aB} = carico di rottura assiale ghiera a tacche

M_{AG} = coppia di serraggio grano filettato

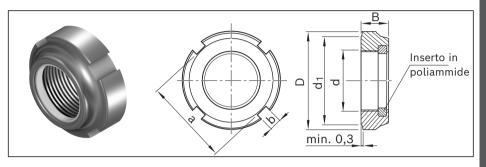

Sigla	Numero di identificazione	(mm)	mm)						M _A	F _{aB}	M_{AG}	Massa				
		d	D	В	d_1	С	m	b	t	e	f	g	(Nm)	(kN)	(Nm)	(g)
NMZ 6x0,5	R3446 001 04	M6x0,5	16	8	12	4	M4	3	2,0	11,0	2,5	3,5	2	17	1	10
NMZ 10x1	R3446 002 04	M10x1	18	8	14	4	M4	3	2,0	14,0	2,5	3,5	6	31	1	10
NMZ 12x1	R3446 003 04	M12x1	22	8	18	4	M4	3	2,0	17,0	2,5	3,5	8	38	1	15
NMZ 17x1	R3446 004 04	M17x1	28	10	23	5	M5	4	2,0	22,5	3,0	4,0	15	57	3	28
NMZ 20x1	R3446 005 04	M20x1	32	10	27	5	M5	4	2,0	26,0	3,0	4,0	18	69	3	35
NMZ 25x1,5	R3446 007 04	M25x1,5	45	20	40	10	M6	5	2,0	35,0	4,0	5,0	25	211	5	55
NMZ 30x1,5	R3446 006 04	M30x1,5	45	12	40	6	M6	5	2,0	37,5	4,0	5,0	32	112	5	75
NMZ 45x1,5	R3446 032 04	M45x1,5	65	14	59	7	M6	6	2,5	-	-	-	65	181	5	170
NMZ 55x2	R3446 033 04	M55x2	75	16	68	8	M6	7	3,0	-	-	-	95	229	5	230
NMZ 60x2	R3446 031 04	M60x2	80	16	73	8	M6	7	3,0	-	-	-	100	255	5	250
NMZ 70x2	R3446 034 04	M70x2	92	18	85	9	M8	8	3,5	-	-	-	130	305	15	360
NMZ 80x2	R3446 035 04	M80x2	105	18	95	9	M8	8	3,5	-	-	-	160	355	15	460
NMZ 90x2	R3446 036 04	M90x2	120	20	108	10	M8	10	4,0	-	-	_	200	410	15	700


Utensile di montaggio per ghiera a tacche

Inserto chiave a bussola universale per ghiera a tacche NMA / NMZ - disponibile su richiesta


Ghiera a tacche NMG

Per costruzioni convenienti



NMA: composta da: AMS, ZMS e ZME

NMZ: composta da: ZMS e ZME


Sigla	Numero di identificazione	Dimensi	Dimensioni (mm)						Massa
		d	D	В	d ₁	a	b	(Nm)	(g)
NMG 12x1	R3446 002 02	M12x1	21	7,6	18	18	3	8	10
NMG 15x1	R3446 011 02	M15x1	24	8,6	21	21	4	10	13
NMG 20x1	R3446 005 02	M20x1	32	9,6	27	27	4	18	24

Anello filettato GWR

- Per cuscinetti di vincolo assiale a doppia corona di sfere a contatto obliguo LGN
- Per chiocciola singola cilindrica ZEM-E-S

Attenzione:

assicurare il prodotto con frenafiletto (ad es. Loctite 638) per evitare che si allenti M_A = coppia di serraggio anello filettato

Sigle	Numero di	Dimensioni	(mm)					M _A	Massa
	identificazione	D	d	В	е	f	g	(Nm)	(g)
GWR 18x1	R1507 040 33	M18x1	8,5	8	12,5	2,5	3	6	10,0
GWR 23x1	R1507 240 35	M23x1	13,0	8	18,0	2,5	3	8	15,0
GWR 26x1,5	R1507 240 22	M26x1,5	16,5	8	20,5	2,5	3	10	16,5
GWR 30x1,5	R1507 340 34	M30x1,5	17,0	8	23,0	3,0	4	20	29,0
GWR 36x1,5	R1507 040 23	M36x1,5	22,0	8	29,0	3,0	4	25	35,0
GWR 40x1,5	R1507 140 03	M40x1,5	25,0	8	33,0	3,0	4	28	39,5
GWR 45x1,5	R1507 240 04	M45x1,5	28,0	8	38,0	3,0	4	30	55,0
GWR 50x1,5	R1507 240 25	M50x1,5	31,0	10	40,0	4,0	5	45	86,0
GWR 55x1,5	R1507 340 05	M55x1,5	36,0	10	46,0	4,0	5	50	96,0
GWR 58x1,5	R1507 440 32	M58x1,5	43,0	10	50,0	4,0	5	58	84,0
GWR 60x1	R1507 440 28	M60x1	43,0	10	51,0	4,0	5	60	97,0
GWR 62x1,5	R1507 440 29	M62x1,5	43,0	12	53,0	5,0	6	60	127,0
GWR 65x1,5	R1507 440 26	M65x1,5	47,0	12	55,0	4,0	5	70	136,0
GWR 70x1,5	R1507 440 06	M70x1,5	42,0	12	58,0	4,0	5	75	216,0
GWR 78x2	R1507 567 27	M78x2	54,0	15	67,0	6,0	7	90	286,0
GWR 92x2	R1507 640 09	M92x2	65,0	16	82,0	6,0	7	125	385,0
GWR 95x2	R1507 667 28	M95x2	68,0	16	82,0	6,0	7	130	425,0
GWR 112x2	R1507 740 11	M112x2	82,0	18	100,0	8,0	8	175	596,0
GWR 115x2	R1507 767 29	M115x2	85,0	18	100,0	8,0	8	200	664,0

Vite a sfere con unità di lubrificazione frontale

Caratteristiche eccellenti

La sicurezza di funzionamento dell'unità di lubrificazione frontale di serie Rexroth consente a una vite a sfere di raggiungere prestazioni di esercizio molto elevate senza rilubrificazione. A seguito di intensi lavori di sviluppo e svariati collaudi in condizioni reali di esercizio, l'unità di lubrificazione frontale, in combinazione con una chiocciola dotata di ingrassaggio preliminare, permette la perfetta lubrificazione a vita di una vite a sfere Rexroth. L'unità di lubrificazione frontale cede da un serbatoio l'esatta quantità di olio necessaria per ripristinare l'olio separatosi dal sapone del grasso e andato consumato. L'olio viene apportato direttamente sulla pista della vite, senza attrito, attraverso l'area di contatto puntiforme realizzata in schiuma espansa a pori aperti. Grazie a questa distribuzione ottimale viene minimizzato il consumo di lubrificante e si ottiene una lubrificazione a vita.

A basso impatto ambientale

Con l'unità di lubrificazione frontale è possibile soddisfare in maniera ideale sia requisiti ambientali, sia di economicità.

Il consumo d'olio si riduce sensibilmente al un livello minimo e l'ambiente non è soggetto a inquinamento. L'ambiente circostante resta pulito.

Altri punti focali

- fornita completamente montata con la vite a sfere
- di ingombro ridotto, perché montata su un lato vicino alla chiocciola
- può essere impiegata in tutte le posizioni di montaggio, per applicazioni sia orizzontali che verticali
- disponibile per quasi tutti i tipi di chiocciole di diametro compreso tra 20 e 40
- può essere integrata facilmente nella costruzione e montata a scelta o dal lato della flangia o dall'altro lato nel caso di chiocciole ad un principio
- grazie alla possibilità di montaggio su entrambi i lati è assicurata la lubrificazione anche per chiocciole a due principi ad alto carico (FED-E-B)
- utilizzabile in tutte le condizioni ambientali, eccezion fatta per gli ambienti umidi e polverosi.

Life**L**ong**L**ube

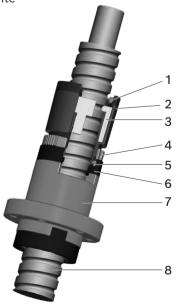
Concetto di lubrificazione

Questo logo significa che la vite a sfere Rexroth con chiocciola dotata di ingrassaggio preliminare è lubrificata

Nota: l'unità di lubrificazione frontale non è indicata per chiocciole rotanti.

Lubrificazione a vita

La durata in esercizio dell'unità di lubrificazione frontale di Rexroth coincide con la curva di durata di vita della vite a sfere. Grazie all'ottimale distribuzione di lubrificante nelle condizioni di carico normalmente applicate, la vite a sfere con unità di lubrificazione frontale è lubrificata a vita. Con ciò, è possibile fornire per la prima volta indicazioni precise e affidabili sulle prestazioni di un'unità di lubrificazione frontale, prestazioni confermate dai nostri numerosi test. L'unità di lubrificazione frontale di Rexroth consente il funzionamento sicuro di una vite a sfere per cinque anni o 300 milioni di giri, senza che sia necessaria una rilubrificazione.


Struttura delle unità di lubrificazione frontali

- 1 Guarnizione
- 2 Supporto e coperchio
 - materiale: plastica speciale
- 3 Schiuma espansa a pori aperti
- 4 Anello filettato
- 5 Anello intermedio
- 6 Calotta di ricircolo
- 7 Chiocciola
- 8 Vite dell'unità vite a sfere

Avvertenze

Per il dimensionamento della corsa tenere conto delle dimensioni dell'unità di lubrificazione frontale.

Durante le operazioni di set up evitare collisioni fra l'unità di lubrificazione frontale e una qualsiasi altra parte della macchina.

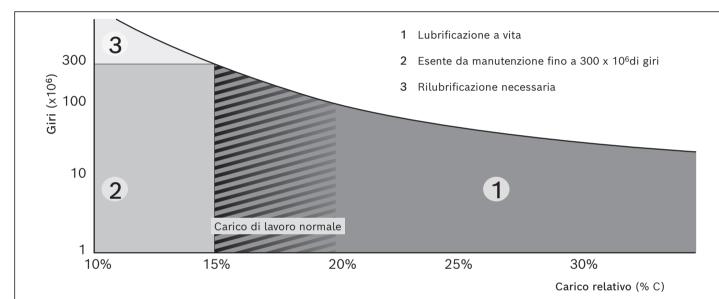
Chiocciola con unità di lubrificazione frontale

Unità di lubrificazione frontale

L'unità di lubrificazione frontale (VSE) serve al funzionamento a lungo termine, esente da manutenzione della vite a sfere. Essa viene fissata alla chiocciola e lubrifica in modo costante i corpi volventi. Per corse di 300 milioni di giri senza rilubrificazione

L'unità di lubrificazione frontale può essere abbinata ai seguenti tipi di chiocciola:

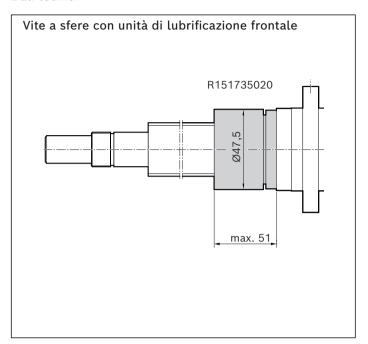
- FEM-E-S - FED-E-B

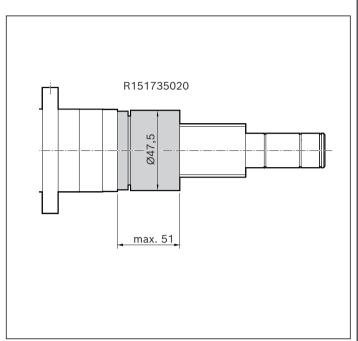

- FEM-E-B - FDM-E-S

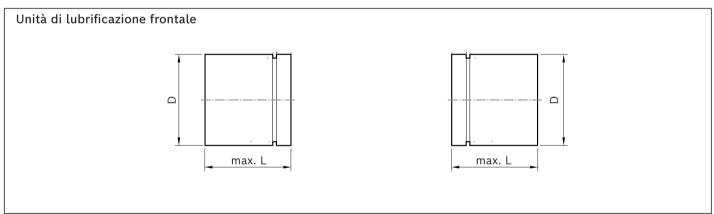
- SEM-E-S - FDM-E-B

- SEM-E-C

Lubrificazione a vita


I nostri molteplici test hanno confermato:

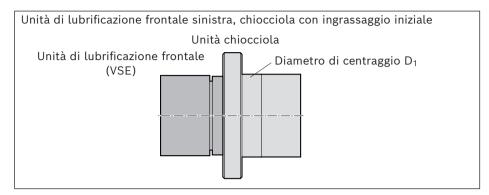

- 1 Per carichi assiali pari al 15-35% del carico dinamico C la chiocciola è lubrificata a vita.
- Per carichi assiali < 15% del carico dinamico C la vite a sfere è esente da manutenzione fino a 300 milioni di giri.
- 3 Dopo 300 milioni di giri la chiocciola viene rilubrificata come di consueto. L'unità di lubrificazione frontale non deve essere smontata. Essa rimane montata sulla chiocciola.


Passo (mm)	Corsa s con unità di lubrificazione frontali ¹⁾ (km)
5	1 500
10	3 000
20	6 000
25	7 500
32	9 600
40	12 000

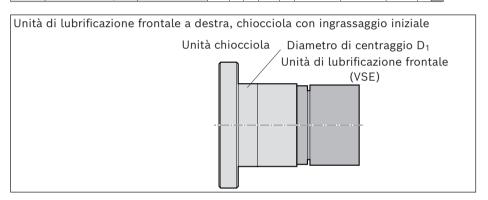
¹⁾ Carico max. fino a 0,15C

Dati tecnici

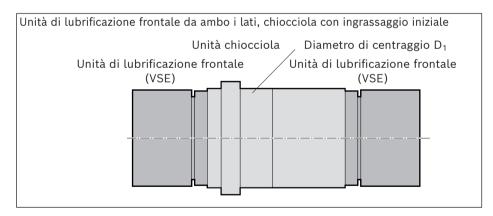
Avviso: l'unità di lubrificazione frontale viene fornita completamente montata con la vite a sfere.


Montaggio consentito solo da parte del costruttore.

Grandezza dell'unità di lubrificazione frontale	Numero di identificazione	(mm)		Massa (kg)
d ₀ x P		D	L	m
20 x 5 R	R151715000	32,60	51,00	0,021
20 x 20 R				
25 x 5 R	R151725010	37,50	51,00	0,027
25 x 10 R				
25 x 25 R				
32 x 5 R	R151735030	47,50	51,00	0,042
32 x 10 R				
32 x 20 R				
32 x 32 R				
40 x 5 R	R151745030	55,50	53,00	0,055
40 x 10 R	R151745050	62,30	51,00	0,070
40 x 20 R				
40 x 40 R				


Chiocciola con unità di lubrificazione frontale

Esempio d'ordinazione dell'unità di lubrificazione frontale con rappresentazione della direzione di montaggio


BASA 32 x 10R x 3,969 FEM-E-S - 5 00 1 3 T7 R 81K203 31K200 1000 0 2

BASA 32 x 10R x 3,969 FEM-E-S - 5 00 1 3 T7 R 81K203 31K200 1000 0 3

BASA | 40 x 20R x 6 | FEM-E-B - 8 | 00 | 1 | 3 | T7 | R | 81K250 | 31K300 | 1000 | 0 | 4

Direzione di montaggio dell'unità di lubrificazione frontale su tipi di chiocciola

Tipo di chiocciola	Direzione di montaggio
FEM-E-S	2, 3
FEM-E-B	2, 3
SEM-E-S	2, 3
SEM-E-C	2, 3
FED-E-B	4
FDM-E-S	2, 3
FDM-E-B	2, 3

Pattini di misura

Allineamento della vite a sfere nella macchina

Per agevolare l'allineamento della vite a sfere, Rexroth mette a disposizione una sonda con superficie ribaltabile sulla vite.

Sono disponibili due pattini di misura di lunghezze differenti, utilizzati in funzione del passo della vite:

- nº di identificazione R3305 131 19, lunghezza 33 mm per passi < 20
- n° di identificazione R3305 131 21, lunghezza 50 mm per passi > 20

L'indicatore a quadrante non è compreso nella fornitura della vite a sfere

Chiocciola d'emergenza

Montaggio/Struttura/Proprietà

- Montaggio su flangia con viti a esagono cavo per il fissaggio della chiocciola d'emergenza
- Il diametro di centraggio previene spostamenti radiali
- La guarnizione anulare non deve essere applicata sulla chiocciola bensì sulla chiocciola d'emergenza. (Impedisce che lo sporco penetri tra la chiocciola d'emergenza e la vite)
- La lunghezza della chiocciola d'emergenza è determinante per il fattore di sicurezza
 - (standard: doppia sicurezza costruttiva rispetto al fattore di carico statico)
- Con viti a più principi vengono impiegate chiocciole d'emergenza a più principi

Montaggio consigliato

Per evitare che le viti di fissaggio siano soggette a sollecitazioni di trazione, la forza o la massa deve agire sempre sulla chiocciola d'emergenza. La vincolatura assiale della vite deve risultare sotto.

Il controllo deve essere affidato unicamente a tecnici qualificati del servizio assistenza.

Dimensionamento

Rivolgetevi ai nostri collaboratori

Vite Guarnizione Chiocciola Sfere Chiocciola d'emergenza con profilo negativo

Principio di funzionamento

La chiocciola con chiocciola d'emergenza è costituita dalla chiocciola (ad es. FEM-E-B) e da una chiocciola d'emergenza supplementare che ingrana nella pista della vite con il profilo negativo. Il funzionamento della chiocciola con chiocciola d'emergenza è in linea di massima lo stesso della chiocciola normale. Se si registra un calo di funzionamento della chiocciola (ad es. della sfera) la parte filettata della chiocciola d'emergenza va contatto con la vite. Si evita così una caduta incontrollata della chiocciola.

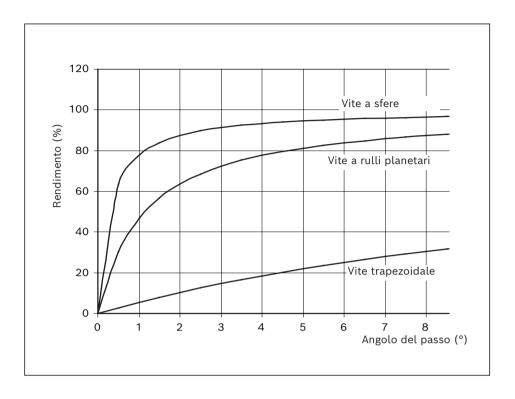
Impiego

Per applicazioni critiche nel funzionamento non orizzontale (ad es. per prevenire danni materiali). La chiocciola d'emergenza viene montata dal basso sulla chiocciola nella direzione di forza.

Le chiocciole d'emergenza non sono componenti di sicurezza ai sensi della direttiva macchine 2006/42/CE. La responsabilità di una progettazione sicura/applicazione specifica spetta pertanto unicamente a voi, in quanto produttore di macchine. Controllare in particolare che non insorgano pericoli per le persone. Nel caso specifico di assi soggetti a carichi verticali prevedere pertanto un dispositivo supplementare di arresto/bloccaggio che prevenga la caduta di componenti di azionamento! Evitare in ogni caso la caduta della chiocciola.

Note tecniche

Secondo ISO 3408-1, una vite a sfere si definisce nel seguente modo:


La vite a sfere (BASA) è un gruppo è costituito da vite dell'unità vite a sfere, chiocciola e sfere in grado di trasformare un moto rotatorio in un moto rettilineo e viceversa.

I vantaggi rispetto alla vite trapezoidale

- Il rendimento meccanico, corrispondente a max. il 50% per la vite trapezoidale, raggiunge per la vite a rulli planetari il 90% e per la vite a sfere il 98%.
- Aumentata durata di vita, grazie a funzionamento pressoché resistente all'usura.
- Richiesta minore potenza motrice
- Nessun effetto stick-slip
- Posizionamento più preciso
- Velocità di traslazione aumentata
- Minor sviluppo di calore

Per via dell'elevato rendimento (minore attrito tra vite e chiocciola) le unità viti a sfere non sono autobloccanti.

Avvertenza per la sicurezza
Nell'eventualità di montaggio non
in posizione orizzontale il cliente
deve accertarsi se occorre un
dispositivo anticaduta apposito,
ad es. unachiocciola d'emergenza.
Per applicazioni particolarmente critiche
nel funzionamento verticale consigliamoil
montaggio dichiocciole d'emergenza.
Vogliate contattarci.

Criteri di selezione per unità viti a sfere

Per la progettazione di una vite a sfere sono importanti i fattori seguenti:

- esigenza di precisione (errore del passo)
- carico
- durata di vita
- velocità critica
- carico di punta
- rigidezza/assenza di gioco
- fattore di velocità (max. velocità lineare ammessa)

Per realizzare soluzioni costruttivamente ed economicamente ottimali, considerare i punti seguenti:

- Il passo è un fattore determinante per la capacità di carico (determinato dal diametro massimo possibile della sfera) e per la coppia motrice.
- Per il calcolo della durata vanno considerati i carichi e le velocità medie e non i valori massimi.
- Per poter offrire la soluzione ottimale, consigliamo di allegare alla richiesta d'offerta un disegno d'insieme dell'applicazione corredato dalle specifiche tecniche.

A Attenzione

Forze radiali e forze radiali conseguenti a errori di eccentricità devono essere evitate perché influenzano negativamente la durata e la funzionalità della vite a sfere.

In caso di particolari condizioni di impiego, vi preghiamo di interpellarci.

Dati tecnici

Fattori di carico e durata di vita

I calcoli dei fattori di carico e della durata di vita si basano su ISO 3408-5. I fattori di carico dinamico riportati nelle tabelle risultano superiori ai valori conformi a ISO 3408-5. Tali valori sono stati comprovati nei test.

Fattore di carico statico Co

Con fattore di carico statico si intende un carico agente sull'asse della vite, con direzione assiale e capace di determinare tra sfera e relativa pista una deformazione permanente pari a 0,0001 x diametro sfera.

Fattore di carico dinamico C

Il fattore di carico dinamico è il carico agente sull'asse della vite, con direzione assiale, di grandezza e direzione costanti e al di sotto del quale il 90% di un numero sufficientemente elevato di unità viti a sfere reciprocamente uguali raggiunge una durata di vita nominale di 1 milione di giri (è un dato puramente teorico).

Fattore di correzione delle classi di tolleranza

In funzione della classe di tolleranza della vite il fattore di carico statico C_0 e il fattore di carico dinamico C devono essere moltiplicati per i fattori di correzione f_{ac} .

Classe di tolleranza T	3	5	7	9
f _{ac}	1	1	0,9	0,8

Durata di vita

La durata di vita nominale viene espressa dal numero di rotazioni (o di ore di esercizio a numero di giri invariato) che viene raggiunto oppure superato dal 90% di un numero sufficientemente elevato di unità viti a sfere reciprocamente uguali, prima che si manifesti il primo segno di affaticamento del materiale. La durata di vita nominale viene indicata con L o Lh, a seconda che il suo valore venga espresso in rotazioni o in ore.

Corsa breve

Risulta la corsa breve se corsa ≤ lunghezza chiocciola L

Lubrificazione:

In caso di corsa breve i rulli satellite non compiono una rivoluzione completa. Non si forma pertanto un sufficiente strato di lubrificante e non si può escludere l'usura prematura.

A fini di rimedio consigliamo di ridurre gli intervalli di lubrificazione ed eseguire corse più lunghe ("corse di lubrificazione"). Se si ricorre a corsa breve consultare i nostri centri regionali. Troverete il vostro referente locale all'indirizzo:

www.boschrexroth.com/contact Fattore di carico:

per corsa breve aumenta il numero di volte in cui vengono sollecitati i punti interni alle zone di carico.

Ciò può comportare una riduzione del fattore di carico.

Velocità critica e carico di punta La velocità critica e il carico di punta possono essere controllati sulla base del diagramma corrispondente. Per calcoli precisi:

formula 12 15 vedi capitolo Calcoli

Fattore di velocità d₀ · n

Grazie al ricircolo interno delle sfere, le unità viti a sfere Rexroth possono essere azionate a numeri di giri molto elevati, al punto da raggiungere fattori di velocità fino a 150 000, a seconda del tipo di chiocciola.

 $d_0 \cdot n \hspace{0.1in} \leq \hspace{0.1in} 150 \hspace{0.1in} 000$

d₀ = diametro nominale (mm) n = numero di giri (min⁻¹) L'indicazione della velocità lineare teorica massima possibile v_{max} (m/min) è riportata alla pagina della chiocciola corrispondente. Le velocità effettivamente raggiungibili dipendono, tra gli altri, dal precarico e dal tempo d'inserzione. Sono limitate, in linea di massima, dalla velocità critica.

Materiali e durezze

(Vedi capitolo Calcoli)

Le unità viti a sfere sono realizzate in acciaio bonificato di alta qualità, acciaio per cuscinetti a sfere o acciaio da cementazione. La durezza delle viti e delle chiocciole in corrispondenza delle piste è HRC 58. Su richiesta sono disponibili unità viti a sfere in acciaio inossidabile (DIN EN 10088). Di norma, le estremità delle viti non sono indurite.

Assi verticali

Per l'utilizzo verticale delle viti a sfere si consiglia un precarico massimo medio. Per le avvertenze sul dispositivo anticaduta, consultare la voce "chiocciola d'emergenza".

Protezione

Le unità viti a sfere richiedono una protezione contro lo sporco. Particolarmente adatti sono al riguardo le coperture piatte, i soffietti o l'unità di azionamento AGK. Poiché in molti casi questi accorgimenti non sono sufficienti, abbiamo messo a punto una guarnizione a labbro che, grazie al suo basso attrito, non determina alcuna apprezzabile riduzione del rendimento. Pertanto, nella versione standard, le nostre unità viti a sfere vengono fornite complete di guarnizioni. Su richiesta, possono essere fornite senza guarnizioni oppure con guarnizioni speciali. Nei casi in cui è inevitabile un forte imbrattamento della vite, è stata sviluppata una variante rinforzata della guarnizione standard. Con l'aumento del precarico ne è stata ulteriormente migliorata l'azione protettiva. Rispetto alla guarnizione standard, occorre tener conto del sensibile aumento del momento d'attrito (vedi Dati tecnici) e del conseguente maggior sviluppo di calore. La guarnizione rinforzata è facilmente riconoscibile per il colore verde opale.

Temperature di esercizio ammesse Le unità viti a sfere tollerano temperature con andamento costante di 80 °C e per breve tempo punte di 100 °C, misurate rispettivamente sulla superficie esterna della chiocciola.

Temperature di esercizio ammesse: $-10~^{\circ}C \le T_{esercizio} \le 80~^{\circ}C$

Temperatura del cuscinetto ammessa $-15~^{\circ}\text{C} \le T_{\text{cuscinetto}} \le 80~^{\circ}\text{C}$

Magazzino

Per il calcolo della durata di vita di tutto il sistema occorre tener conto del tipo di vincolo separatamente.

Condizioni di collaudo e classi di tolleranza

Scostamento o errore massimo ammissibile del passo

Secondo ISO 3408-3

Spiegazioni delle abbreviazioni: (estratto)

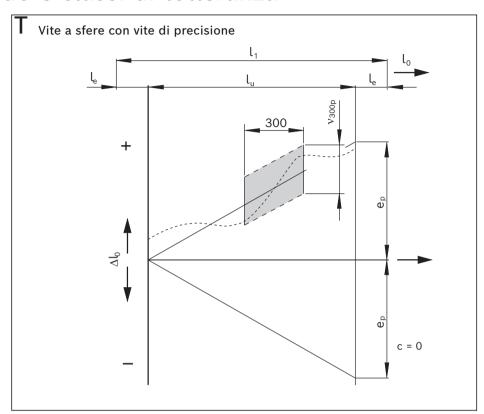
= corsa nominale l_0

= lunghezza filettata

 Δl_0 = scostamento del passo

l_u = lunghezza utile

= extracorsa (non vengono applicate le tolleranze di corsa e di durezza limitate per la lunghezza utile)


= compensazione corsa (standard: c = 0)

= Scostamento limite della lunghezza nominale

v_{300p}= variazione della corsa ammessa su percorso di 300 mm

= effettivo (actual)

= ammesso (permissible)

Classi di tolleranza viti di precisione

Classe di tolleranza			
3	5	7	9

Variazione della corsa ammessa per 300 mm

ν _{300p} (μm) Classe di tolleranza			
3	5	7	9
12	23	52	130

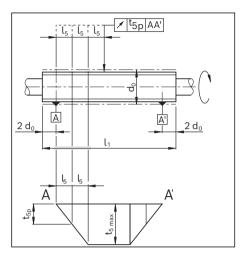
Scostamento ammesso per la lunghezza nominale della vite

Lunghezza l _u	a utile	Tolleranza per la e _p (µm) Classe di tollera	a lunghezza nomi anza	nale della vite	
>	≤	3	5	7	9
0	100	8	18	44	110
100	200	10	20	48	120
200	315	12	23	52	130
315			$e_p = \frac{I_0}{30}$	00 · √300p	

Lunghezza non utilizzabile l_e (extracorsa) Modificata rispetto a ISO 3408-3

d_0	l _e
(mm)	(mm)
6, 8	15
12, 16	20
20, 25, 32, 40	40
50, 63, 80	50

Numero minimo di misurazioni entro 300 mm (intervalli di misurazione) ed extracorsa da considerare.

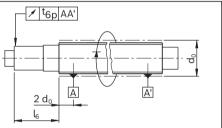

(mm) 3 5 7 9 1 10 6 3 2 2 10 6 3 2 2,5 10 6 3 2 5 10 6 3 2 10 5 3 1 1 12 5 3 1 1 16 5 3 1 1	
2 10 6 3 2 2,5 10 6 3 2 5 10 6 3 2 10 5 3 1 1 12 5 3 1 1	
2,5 10 6 3 2 5 10 6 3 2 10 5 3 1 1 12 5 3 1 1	
5 10 6 3 2 10 5 3 1 1 12 5 3 1 1	
10 5 3 1 1 12 5 3 1 1	
12 5 3 1 1	
16 5 3 1 1	
20 4 3 1 1	
25 4 3 1 1	
30 3 2 1 1	
32 3 2 1 1	
40 2 1 1 1	
64 2 1 1 1	

Condizioni di collaudo e classi di tolleranza

Scostamenti inerenti alla rotazione della vite

secondo ISO 3408-3

Tolleranza di rotazione concentrica t₅ del diametro esterno della vite dell'unità vite a sfere sulla lunghezza l₅ per la determinazione della rettilineità riferita ad AA'.

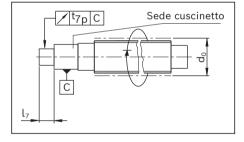


d_0		l ₅	l ₅ t _{5p} in μm per ₅ per classe di tolleranza				
oltre	fino a		3	5	7	9	
= 6	12	80	25	32	40	60	
12	25	160					
25	50	315					
50	100	630					

l_1/d_0		t _{5max} in µm						
		per l₁≥	per $l_1 \ge 4 l_5$					
		Classe	Classe di tolleranza					
oltre	fino a	3	5	7	9			
	40	50	64	80	120			
40	60	75	96	120	180			
60	80	125	160	200	300			
80	100	200	256	320	480			

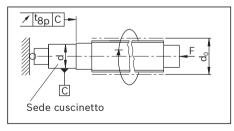
Tolleranza di rotazione concentrica t₆ della sede del cuscinetto riferita ad AA' per $l_6 \le l$. Il valore in tabella t_{6p} vale se $I_{6} \le$ lunghezza di riferimento I.

Per
$$l_6 > l$$
 vale $t_{6a} \le t_{6p} \cdot \frac{l_{6a}}{l}$

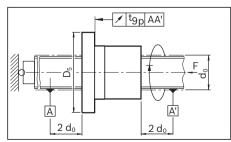


Diam	etro	Lunghez-				
nomii	nale	za di rife-	per l ₆ ≤ l			
		rimento				
d_0		ι	Classe di tolleranz			ranza
oltre	fino a		3	5	7	9
= 6	20	80	12	20	40	50
20	50	125	16	25	50	63
50	125	200	20	32	63	80

Tolleranza di rotazione concentrica t_7 del codolo terminale della vite dell'unità vite a sfere riferita alla sede del cuscinetto per $l_7 \le l$. Il valore in tabella t_{7p} vale se $I_7 \le lunghezza$ di riferimento I.


Per
$$l_7 > l$$
 vale $t_{7a} \le t_{7p} \cdot \frac{l_{7a}}{l}$

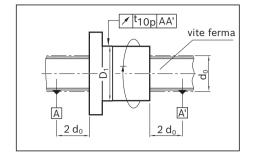
Per $l_7 > l$ vale


Diametro			Lunghez-					
	nomii	nale	za di rife-	per l	. ₇ ≤ l			
			rimento					
	d_0		l	Classe di tollerar			anza	
	oltre	fino a		3	5	7	9	
	= 6	20	80	6	8	12	14	
	20	50	125	8	10	16	18	
	50	125	200	10	12	20	23	

Tolleranza di oscillazione assiale t₈ dello spallamento della sede del cuscinetto della vite dell'unità vite a sfere riferita alla sede del cuscinetto.

Diametro	nominale	t _{8p} in	μm		
d_0		per cla	asse d	i tolle	ranza
oltre	fino a	3	5	7	9
= 6	63	4	5	6	8
63	125	5	6	8	10

Tolleranza di oscillazione assiale t₉ della superficie di contatto della chiocciola riferita ad A e A' (solo per chiocciole precaricate).


Diametro	flangia	t _{9p} in p	μm		
D_5		per cla	asse d	i tolle	ranza
oltre	fino a	3	5	7	9
16	32	12	16	20	_
32	63	16	20	25	_
63	125	20	25	32	_
125	250	25	32	40	_

Dati tecnici

Dati tecnici

Tolleranza di rotazione concentrica t_{10} del diametro esterno D_1 della chiocciola riferita ad A e A^\prime

(solo per chiocciole precaricate e rotanti). Per la misurazione fissare la vite dell'unità vite a sfere per evitarne la torsione.

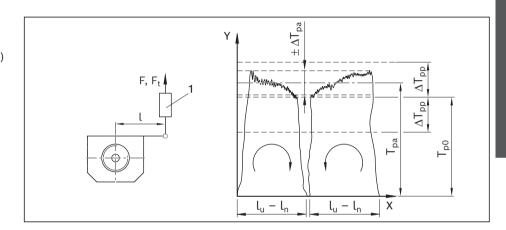
Diametro	esterno	t _{10p} in µm per classe			
D_1		di tol	lleran	za	
oltre	fino a	3	5	7	9
16	32	12	16	20	_
32	63	16	20	25	-
63	125	20	25	32	-
125	250	25	32	40	_

Per le tolleranze di oscillazione assiale e rotazione concentrica ammesse per chiocciola rotante vi preghiamo di contattarci

Scostamento limite ΔT_{pp} per il momento torcente senza carico esterno T_{p0} in seguito a precarico (solo per chiocciole precaricate)

Spiegazioni delle abbreviazioni:

X = Corsa

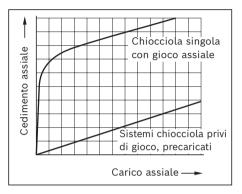

Y = momento torcente senza carico esterno per precarico

1 = dinamometro

 $T_p = F \cdot l$ senza raschiatore

 $T_t = F_t \cdot l \text{ con raschiatore}$

 l_n = lunghezza della chiocciola



per	T _{p0} (Nm))	Classe	di tollera	nza					
l_u / d_0			3	5	7	9	3	5	7	9
	>	≤	ΔT_{pp}	(% di T _{p0}); l _u ≤ 4	000 mm	ΔT_{pp}	(% di T _{p0}	$(1); l_u > 4$	000 mm
≤ 40	0	0,4	40	50	50	_	60	60	70	_
	0,4	0,6	35	40	40	-	50	50	60	_
	0,6	1,0	30	35	40	-	40	45	50	_
	1,0	2,5	25	30	35	_	35	40	45	_
	2,5	6,3	20	25	30	-	30	35	40	_
	6,3	10,0	15	20	30	_	25	30	35	_
	10,0		15	20	30	_	25	30	35	_
> 40	0	0,4	50	60	60	-	60	60	70	_
	0,4	0,6	40	45	45	_	50	50	60	_
	0,6	1,0	35	40	45	_	40	45	50	_
	1,0	2,5	30	35	40	_	35	40	45	_
	2,5	6,3	25	30	35	_	30	35	40	-
	6,3	10,0	20	25	35	_	25	30	35	_
	10,0		20	25	35	_	25	30	35	_

Precarico e rigidezza

Precarico dei sistemi chiocciola

Oltre alle chiocciole singole con gioco assiale limitato, Rexroth fornisce sistemi chiocciola precaricati oppure privi di gioco e registrabili.

Le rigidezze dei diversi sistemi chiocciola Rexroth si comportano in modo pressoché identico con lo stesso precarico. Motivo: la chiocciola singola senza gioco e registrabile e la chiocciola singola precaricata lavorano essenzialmente in modo compatto: esse sono più corte della metà rispetto a quelle doppie. La rigidezza della vite è in effetti minore rispetto a quella dell'unità chiocciola (per i dettagli si rimanda a "Rigidezza assiale totale...").

In generale:

il precarico del dado agisce come un carico aggiuntivo, pertanto selezionare il valore di precarico strettamente necessario.

Chiocciola singola precaricata

La chiocciola singola può essere precaricata in modo ottimale con le classi di precarico C1, C2 o C3 attraverso sfere selezionate.

Chiocciola singola con precarico registrabile Con la chiocciola singola con precarico registrabile si possono ottenere costruzioni economicamente vantaggiose in molti impieghi.

Mediante la registrazione radiale di una fessura di ca. 0,1 mm di larghezza si può ottenere l'assenza di gioco o il precarico; fare riferimento al paragrafo "Montaggio". A seconda dell'impiego, prevediamo un precarico per il sistema chiocciola con classi di precarico C1, C2 o C3. Il precarico massimo è la classe di precarico C3.

Chiocciola singola flangiata FED Con l'impiego di sfere selezionate è possibile precaricare in modo ottimale la chiocciola singola della serie HP con classi di precarico C1 o C2.

Chiocciola doppia

Mediante l'interposizione di un distanziale tra le due chiocciole singole, si elimina il gioco assiale di fabbricazione, si aumenta la rigidezza e si migliora, quindi, la precisione di posizionamento.

Per evitare una riduzione di durata, il precarico non deve essere superiore $a^1/_3$ del carico di lavoro medio. A seconda dell'impiego, prevediamo un precarico per il sistema chiocciola con classi di precarico C4 o C5. La chiocciola doppia è particolarmente indicata per le applicazioni altamente dinamiche.

Chiocciola rotante FAR

Con l'impiego di sfere selezionate è possibile precaricare la chiocciola rotante della serie HP come una chiocciola singola con le classi di precarico C1, C2 o C3.

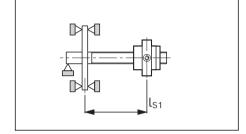
Dati tecnici

Rigidezza

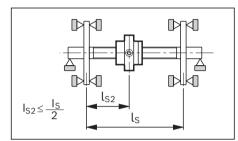
La rigidezza di una vite a sfere è influenzata anche dalle parti di collegamento come cuscinetti, sedi, supporto chiocciola, ecc.

Rigidezza assiale totale R_{bs} della vite a sfere

La rigidezza assiale totale R_{bs} deriva dalle rigidezze degli elementi componenti: rigidezza dei cuscinetti Rfb, rigidezza della vite R_S e rigidezza dell'unità chiocciola R_{nu}.


$$\frac{1}{R_{bs}} = \frac{1}{R_{fb}} + \frac{1}{R_{S}} + \frac{1}{R_{nu}}$$
 16

Rigidezza della vite R_S

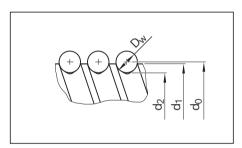

La rigidezza della vite R_S dipende dal tipo di vincolo adottato.

Le rigidezze sono riportate nelle rispettive

1 Vincolatura assiale su un solo lato della vite dell'unità vite a sfere.

2 Vincolatura assiale su entrambi i lati della vite dell'unità vite a sfere.

Nota:


va notato che nella maggior parte dei casi la rigidezza R_S della vite è sostanzialmente inferiore alla rigidezza R_{nu} dell'unità chiocciola. Per una grandezza 40 x 10, la rigidezza R_{nu} dell'unità chiocciola ammonta ad esempio al doppio o al triplo della rigidezza R_S di una vite di lunghezza pari a 500 mm.

Rigidezza del cuscinetto R_{fb}

La rigidezza dei cuscinetti di vincolo corrisponde ai valori riportati nel catalogo del costruttore del cuscinetto. Le rigidezze dei cuscinetti proposti da Rexroth sono riportate nelle tabelle dimensionali del presente catalogo.

Rigidezza nell'ambito dell'unità chiocciola R_{nu}

La rigidezza nell'ambito dell'unità chiocciolaprecaricata è calcolata sulla base della norma ISO 3408-4. Le rigidezze sono riportate nelle rispettive tabelle.

$$R_{S1} = 165 \cdot \frac{(d_0 - 0.71 \cdot D_w)^2}{I_{S1}} (N/\mu m)$$
 17

 R_{S1} = rigidezza della vite $(N/\mu m)$ d₀ = diametro nominale (mm) D_w = diametro della sfera (mm)

$$l_{S1}$$
 = distanza cuscinetto - chiocciola (mm)

$$R_{S2} = 165 \cdot \frac{(d_0 - 0.71 \cdot D_w)^2}{I_{S2}} \cdot \frac{I_S}{I_S - I_{S2}} \ (N/\mu m) \ 18$$

La rigidezza minima della vite ha luogo al centro della vite R_{S2min}.

(
$$l_{S2}$$
 = $l_{S}/2$) Essa ammonta qui a:

$$R_{S2min} = 660 \cdot \frac{(d_0 - 0.71 \cdot D_w)^2}{I_S} (N/\mu m)$$
 19

R_{S2} = rigidezza della vite $(N/\mu m)$ d₀ = diametro nominale (mm) D_w = diametro della sfera (mm)

= distanza cuscinetto - cuscinetto (mm)

= distanza cuscinetto - chiocciola (mm)

Precarico e rigidezza di chiocciole singole

Momento torcente senza carico esterno, precarico e rigidezza per viti della classe di tolleranza 3, 5, 7 con chiocciole singole ZEV-E-S, FEP-E-S (solo C1), FEM-E-S, FEM-E-B, SEM-E-S e SEM-E-C (Osservare il diametro di centraggio D₁ da registrare)

ZEM-E-S, ZEM-E-K, ZEM-E-A, FED-E-B, FAR-B-S

 T_0 = Momento torcente senza carico esterno complessivo

 $T_0 = T_{p0} + T_{RD}$

C = fattore di carico dinamico assiale

C₀ = fattore di carico statico assiale

F_{PR} = forza di pretensionamento

 T_{RD} = momento torcente senza carico esterno delle 2 guarnizioni

R_S = rigidezza della vite

R_{nu} = Rigidezza della chiocciola

 T_{p0} = Momento torcente senza carico esterno senza guarnizione

 d_0 = diametro nominale

= passo

 D_w = diametro della sfera

= numero dei principi utilizzati sulla vite

I valori del momento torcente senza carico esterno sono misure di riferimento comprovate nella prassi per chiocciola precaricata.

Nota:

per la misurazione del momento torcente senza carico esterno vedi paragrafo "Montaggio" Pagina 147.

di ciliocciole siligole							
Grandezza	Fattori di	carico	Gioco assiale ch	niocciola singola	Rigidezza della vite		
			C: 1 1 (OO)	. B. I			
	dyn. C	stat. C ₀	Standard (C0)	Ridotto (C00)	R _S (<u>N⋅m</u>)		
d ₀ x P x D _w - i	(N)	(N)	(mm)	(mm)	$\left(\frac{1}{\mu m}\right)$		
6 x 1R x 0,8 - 3	1 080	1 030	0,01	0,005	5		
6 x 2R x 0,8 - 3	1 070	1 020	0,01	0,005	5		
8 x 1R x 0,8 - 4	1 310	1 850	0,01	0,005	9		
8 x 2R x 1,2 - 4	2 360	2 950	0,01	0,005	9		
8 x 2,5R x 1,588 - 3	2 640	2 800	0,02	0,010	8		
8 x 2,5R x 1,588 - 4	3 490	3 910	0,02	0,010	8		
8 x 5R x 1,588 - 3 12 x 2R x 1,2 - 4	2 500 2 690	2 650 4 160	0,02	0,010 0,005	8 21		
12 x 5R x 2 - 3	4 560	5 800	0,01 0,02	0,003	18		
12 x 10R x 2 - 2	3 000	3 600	0,02	0,010	18		
16 x 5R x 3 - 3	11 300	11 800	0,04	0,020	32		
16 x 5R/L x 3 - 4	14 800	16 100	0,04	0,020	32		
16 x 10R x 3 - 3	11 500	12 300	0,04	0,020	32		
16 x 16R x 3 - 2	7 560	7 600	0,04	0,020	32		
16 x 16R x 3 - 3	11 200	12 000	0,04	0,020	32		
16 x 16R x 3 - 6	17 800	24 200	0,04	0,020	32		
20 x 5R/L x 3 - 4 20 x 5R x 3 - 5	17 200 21 000	21 500 27 300	0,04 0,04	0,020 0,020	53 53		
20 x 10R x 3 - 4	16 900	21 300	0,04	0,020	53		
20 x 20R x 3,5 - 2	10 900	12 100	0,04	0,020	52		
20 x 20R x 3,5 - 3	16 000	18 800	0,04	0,020	52		
20 x 20R x 3,5 - 6	25 700	38 100	0,04	0,020	52		
20 x 40R x 3,5 - 4	14 000	26 200	0,04	0,020	52		
25 x 5R/L x 3 - 4	19 100	27 200	0,04	0,020	86		
25 x 5R x 3 - 7	31 400	48 700	0,04	0,020	86		
25 x 10R x 3 - 4	18 800	27 000	0,04	0,020	86		
25 x 10R x 3 - 5	23 200	34 200	0,04	0,020	86		
25 x 25R 3,5 - 2 25 x 25R x 3,5 - 3	12 100 17 600	15 100 23 300	0,04 0,04	0,020 0,020	84 84		
25 x 25R x 3,5 - 4,8	19 700	39 400	0,04	0,020	84		
25 x 25R x 3,5 - 6	28 500	47 100	0,04	0,020	84		
32 x 5R/L x 3,5 - 4	25 900	40 000	0,04	0,020	144		
32 x 5R x 3,5 - 5	31 700	50 600	0,04	0,020	144		
32 x 10R x 3,969 - 5	38 000	58 300	0,04	0,020	141		
32 x 20R x 3,969 - 2	16 200	21 800	0,04	0,020	141		
32 x 20R x 3,969 - 3	23 600	33 700	0,04	0,020	141		
32 x 20R x 3,969 - 6 32 x 32R x 3,969 - 2	38 300 16 100	67 300 22 000	0,04 0,04	0,020 0,020	141		
32 x 32R x 3,969 - 3	23 400	34 000	0,04	0,020	141		
32 x 32R x 3,969 - 4,8	26 300	57 600	0,04	0,020	141		
32 x 32R x 3,969 - 6	37 900	68 000	0,04	0,020	141		
32 x 64R x 3,969 - 4	21 100	49 000	0,04	0,020	141		
40 x 5R/L x 3,5 - 5	34 900	64 100	0,04	0,020	232		
40 x 10R/L x 6 - 4	60 000	86 400	0,07	0,035	211		
40 x 10R x 6 - 5	73 400	109 300	0,07	0,035	211		
40 x 10R x 6 - 6 40 x 12R x 6 - 4	86 500 59 900	132 200	0,07	0,035	211		
40 x 16R x 6 - 4	59 600	86 200 85 900	0,07 0,07	0,035 0,035	211 211		
40 x 20R x 6 - 3	45 500	62 800	0,07	0,035	211		
40 x 20R x 6 - 8	95 500	171 100	0,07	0,035	211		
40 x 25R x 6 - 4	56 900	85 800	0,07	0,035	211		
40 x 25R x 6 - 8	91 400	171 700	0,07	0,035	211		
40 x 30R x 6 - 4	56 300	85 100	0,07	0,035	211		
40 x 30R x 6 - 8	90 400	170 300	0,07	0,035	211		
40 x 40R x 6 - 2	30 600	40 300	0,07	0,035	211		
40 x 40R x 6 - 3 40 x 40R x 6 - 6	44 400 71 500	62 300 124 500	0,07 0,07	0,035 0,035	211		
50 x 5R x 3,5 - 5	38 400	81 300	0,04	0,033	373		
50 x 10R x 6 - 6	95 600	166 500	0,04	0,025	345		
50 x 12R x 6 - 6	95 500	166 400	0,07	0,035	345		
50 x 16R x 6 - 6	95 300	166 000	0,07	0,035	345		
50 x 20R x 6,5 - 3	57 500	87 900	0,07	0,035	340		
50 x 20R x 6,5 - 5	90 800	149 700	0,07	0,035	340		
50 x 20R x 6,5 - 8	116 500	240 000	0,07	0,035	340		
50 x 25R x 6,5 - 4	71 800	119 500	0,07	0,035	340		
50 x 25R x 6,5 - 6 50 x 30R x 6,5 - 4	92 600 71 300	175 100 118 800	0,07 0,07	0,035 0,035	340 340		
50 x 30R x 6,5 - 4	114 500	237 700	0,07	0,035	340		
50 x 40R x 6,5 - 2	38 500	55 800	0,07	0,035	340		
50 x 40R x 6,5 - 3	55 800	85 900	0,07	0,035	340		
50 x 40R x 6,5 - 6	89 300	171 500	0,07	0,035	340		
D 1 00	00	1.0					

Per grandezze 63 e 80 consultare la pagina seguente

Grandezza Rigidezza e momento torcente senza cario con classe di precarico C1					o chiocci di precari		Classe	di preca	arico C3
	R _{nu}	F _{pr}	T_{p0}	R_{nu}	F _{pr}	T _{p0}	R_{nu}	F _{pr}	T _{p0}
d ₀ x P x D _w - i	(N/μm)	(N)	(Nm) Classe di tolleranza 3; 5; 7	(N/μm)	(N)	(Nm) Classe di tolleranza 3; 5; 7	(N/μm)	(N)	(Nm) Classe di tolleranza 3; 5; 7
6 x 1R x 0,8 - 3	_	_	-	_	_	-	-	_	-
6 x 2R x 0,8 - 3	_	-	-	_	_	-	-	_	_
8 x 1R x 0,8 - 4	_	_		_	_	_	-	_	_
8 x 2R x 1,2 - 4	70	44	0,004	_			_		
8 x 2,5R x 1,588 - 3 8 x 2,5R x 1,588 - 4	90	58	0,004	_			_		
8 x 5R x 1,588 - 3	70	42	0,003	_	_	_	_	_	_
12 x 2R x 1,2 - 4	_	_	-	_	_	-	_	_	_
12 x 5R x 2 - 3 12 x 10R x 2 - 2	100	76 F0	0,009		_		-		
16 x 5R x 3 - 3	160	50 190	0,006 0,030	_			_		
16 x 5R/L x 3 - 4	210	250	0,040	240	370	0,060	290	620	0,100
16 x 10R x 3 - 3	160	190	0,030	190	290	0,050	220	480	0,080
16 x 16R x 3 - 2	100	130	0,020	120	190	0,030	140	320	0,050
16 x 16R x 3 - 3 16 x 16R x 3 - 6	160 250	190 280	0,030 0,050	180 290	280 430	0,050	210	470	0,070
20 x 5R/L x 3 - 4	270	290	0,060	310	430	0,090	360	720	0,140
20 x 5R x 3 - 5	340	350	0,070	390	530	0,110	450	880	0,180
20 x 10R x 3 - 4	270	280	0,060	300	420	0,090	360	710	0,140
20 x 20R x 3,5 - 2 20 x 20R x 3,5 - 3	130 200	180 270	0,040 0,050	150 230	270 400	0,060	180 280	460 670	0,090
20 x 20R x 3,5 - 3	330	410	0,080	380	620	0,080	200	- 670	0,130
20 x 40R x 3,5 - 4	230	280	0,060	-	_	-	-	_	-
25 x 5R/L x 3 - 4	320	320	0,080	360	480	0,120	430	800	0,200
25 x 5R x 3 - 7	560 320	520 310	0,130 0,080	370	470	0,120	430	790	0,200
25 x 10R x 3 - 4 25 x 10R x 3 - 5	400	390	0,080	370	470	0,120	430	790	0,200
25 x 25R 3,5 - 2	160	200	0,050	180	300	0,080	220	510	0,130
25 x 25R x 3,5 - 3	240	290	0,070	270	440	0,110	320	740	0,180
25 x 25R x 3,5 - 4,8	370	390	0,100	-			_		_
25 x 25R x 3,5 - 6 32 x 5R/L x 3,5 - 4	400 390	440 430	0,110 0,140	450 440	680 650	0,170 0,210	520	1 080	0,350
32 x 5R x 3,5 - 5	490	530	0,170	-	790	0,210	- 320	-	- 0,550
32 x 10R x 3,969 - 5	510	630	0,200	580	950	0,300	690	1 590	0,510
32 x 20R x 3,969 - 2	200	270	0,090	230	410	0,130	270	680	0,220
32 x 20R x 3,969 - 3 32 x 20R x 3,969 - 6	300 500	390 610	0,130 0,200	350 570	590 920	0,190	410	990	0,320
32 x 32R x 3,969 - 2	200	270	0,090	220	400	0,130	270	670	0,210
32 x 32R x 3,969 - 3	300	390	0,120	340	590	0,190	400	980	0,310
32 x 32R x 3,969 - 4,8	470	530	0,170		_	_	-	_	_
32 x 32R x 3,969 - 6	490 350	610 420	0,190 0,140	560	910	0,290	-		
32 x 64R x 3,969 - 4 40 x 5R/L x 3,5 - 5	580	580	0,140	660	870	0,350	770	1 460	0,580
40 x 10R/L x 6 - 4	510	1 000	0,400	580	1 500	0,600	690	2 500	1,000
40 x 10R x 6 - 5	650	1 230	0,490	740	1 850	0,730	870	3 080	1,220
40 x 10R x 6 - 6	770	1 440	0,580	880	2 160	0,870	1 030	3 610	1,440
40 x 12R x 6 - 4 40 x 16R x 6 - 4	510 510	1 000 990	0,400 0,400	590 590	1 500 1 490	0,600 0,600	690 690	2 500 2 490	1,000 0,990
40 x 20R x 6 - 3	380	760	0,300	440	1 140	0,460	510	1 900	0,760
40 x 20R x 6 - 8	850	1 530	0,610	960	2 290	0,920	-	-	_
40 x 25R x 6 - 4	500	950	0,380	570	1 420	0,568	680	2 350	0,940
40 x 25R x 6 - 8 40 x 30R x 6 - 4	830 490	1 460 940	0,584 0,376	940 570	2 190 1 410	0,876 0,564	670	2 350	0,940
40 x 30R x 6 - 8	810	1 450	0,580	930	2 170	0,364	-	2 330	- 0,340
40 x 40R x 6 - 2	240	510	0,200	280	770	0,310	330	1 280	0,510
40 x 40R x 6 - 3	370	740	0,300	420	1 110	0,440	500	1 850	0,740
40 x 40R x 6 - 6	600 690	1 140 640	0,460 0,320	690 780	1 720	0,690	910	1 600	0,800
50 x 5R x 3,5 - 5 50 x 10R x 6 - 6	910	1 590	0,320	1 040	960 2 390	1,200	1 220	1 600 3 990	1,990
50 x 12R x 6 - 6	920	1 590	0,800	1 050	2 390	1,190	1 230	3 980	1,990
50 x 16R x 6 - 6	920	1 590	0,790	1 050	2 380	1,190	1 240	3 970	1,990
50 x 20R x 6,5 - 3	480	960	0,480	540	1 440	0,720	640	2 400	1,200
50 x 20R x 6,5 - 5 50 x 20R x 6,5 - 8	790 1 030	1 510 1 860	0,760 0,930	900	2 270 2 800	1,140 1,400	1 060	3 790	1,890
50 x 25R x 6,5 - 4	620	1 200	0,600	710	1 790	0,90	840	2 990	1,500
50 x 25R x 6,5 - 6	780	1 480	0,740	890	2 220	1,110	-	_	_
50 x 30R x 6,5 - 4	620	1 190	0,595	700	1 780	0,890	830	2 970	1,485
50 x 30R x 6,5 - 8 50 x 40R x 6,5 - 2	1 020 300	1 830 640	0,915 0,320	1 160 350	2 750 960	1,375 0,480	410	1 610	0,800
50 x 40R x 6,5 - 2	460	930	0,320	520	1 400	0,460	620	2 330	1,160
50 x 40R x 6,5 - 6	750	1 430	0,710	860	2 140	1,070	-	-	
D 1 00		- 1.	ara la pagina coguent						

Per grandezze 63 e 80 consultare la pagina seguente

Precarico e rigidezza di chiocciole singole

Grandezza	Fattori d	li carico	Gioco assiale chioccio	Rigidezza della vite	
	dyn. C	stat. C ₀	Versione standard (C0)	Ridotto (C00)	R_{s} $\left(\frac{N \cdot m}{\mu m}\right)$
d ₀ x P x D _w - i	(N)	(N)	(mm)	(mm)	(µm)
63 x 10R x 6 - 6	106 600	214 300	0,07	0,035	569
63 x 20R x 6,5 - 3	63 800	112 100	0,07	0,035	563
63 x 20R x 6,5 - 5	100 700	190 300	0,07	0,035	563
63 x 20R x 6,5 - 8	130 800	292 000	0,07	0,035	563
63 x 40R x 6,5 - 2	44 300	74 300	0,07	0,035	563
63 x 40R x 6,5 - 3	64 100	114 100	0,07	0,035	563
63 x 40R x 6,5 - 6	100 000	230 600	0,07	0,035	563
80 x 10R x 6,5 - 6	130 100	291 700	0,07	0,035	938
80 x 20R x 12,7 - 6	315 200	534 200	0,11	0,055	832
80 x 40R x 12,7 - 4	261 600	367 600	0,11	0,055	832

Precarico e rigidezza chiocciole doppie

Momento torcente senza carico esterno, precarico e rigidezza per viti della classe di tolleranza 3, 5. 7 con chiocciole doppie FDM-E-S, FDM-E-B

 T_0 = Momento torcente senza carico esterno complessivo

 $T_0 = T_{p0} + T_{RD}$

C = fattore di carico dinamico assiale

C₀ = fattore di carico statico assiale

 T_{RD} = momento torcente senza carico esterno delle 2 guarnizioni

R_S = rigidezza della vite

R_{nu} = rigidezza della chiocciola

 T_{p0} = momento torcente senza carico esterno senza guarnizione

 d_0 = diametro nominale

P = passo

 D_w = diametro della sfera

= numero di circuiti

I valori del momento torcente senza carico esterno sono misure di riferimento comprovate nella prassi per chiocciola precaricata.

Nota:

per la misurazione del momento torcente senza carico esterno vedi paragrafo "Montaggio" Pagina 147.

Grandezza	Fattori di carico		Rigidezza della vite
			R _S
	dyn. C	stat. C ₀	(N·m)
d ₀ x P x D _w - i	(N)	(N)	(N⋅m/µm)
16 x 5R x 3 - 4	14 800	16 100	32
20 x 5R x 3 - 4	17 200	21 500	53
25 x 5R x 3 - 4	19 100	27 200	86
25 x 10R x 3 - 4	18 800	27 000	86
32 x 5R x 3,5 - 4	25 900	40 000	144
32 x 10R x 3,969 - 5	38 000	58 300	141
40 x 5R x 3,5 - 5	34 900	64 100	232
40 x 10R x 6 - 4	60 000	86 400	211
40 x 10R x 6 - 6	86 500	132 200	211
40 x 20R x 6 - 3	45 500	62 800	211
50 x 5R x 3,5 - 5	38 400	81 300	373
50 x 10R x 6 - 4	66 500	109 000	345
50 x 10R x 6 - 6	95 600	166 500	345
50 x 20R x 6,5 - 5	90 800	149 700	340
63 x 10R x 6 - 4	74 200	140 500	569
63 x 10R x 6 - 6	106 600	214 300	569
63 x 20R x 6,5 - 5	100 700	190 300	563
80 x 10R x 6,5 - 6	130 100	291 700	938
80 x 20R x 12,7 - 6	315 200	534 200	832

Grandezza	Rigidez	za e mo	mento torcente senza ca						
	con classe di precarico C1			Classe d	li precar	ico C2	Classe di precarico C3		
	R _{nu}	Fpr	T _{p0}	R _{nu}	$R_{nu} \mid F_{pr} \mid T_{p0}$		R _{nu}	Fpr	T_{p0}
	(N/µm)	(N)	(Nm)	(N/μm)	(N)	(Nm)	(N/µm)	(N)	(Nm)
d ₀ x P x D _w - i			Classe di tolleranza 3; 5; 7			Classe di tolleranza 3; 5; 7			Classe di tolleranza 3; 5; 7
63 x 10R x 6 - 6	1 100	1 780	1,120	1 250	2 660	1,68	1 460	4 440	2,800
63 x 20R x 6,5 - 3	570	1 060	0,670	650	1 600	1,01	770	2 660	1,680
63 x 20R x 6,5 - 5	950	1 680	1,060	1 080	2 520	1,59	1 280	4 200	2,640
63 x 20R x 6,5 - 8	1 250	2 090	1,320	1 430	3 140	1,98	_	_	_
63 x 40R x 6,5 - 2	390	740	0,460	440	1 110	0,70	520	1 850	1,160
63 x 40R x 6,5 - 3	580	1 070	0,670	660	1 600	1,01	780	2 670	1,680
63 x 40R x 6,5 - 6	950	1 600	1,010	1 080	2 400	1,51	_	_	_
80 x 10R x 6,5 - 6	1 290	2 170	1,730	1 460	3 250	2,60	1 700	5 420	4,340
80 x 20R x 12,7 - 6	1 430	5 250	4,200	1 620	7 880	6,31	1 910	13 100	10,510
80 x 40R x 12,7 - 4	980	3 610	2,888	1 120	5 420	4,336	1 320	9 030	7,224

Grandezza	Rigidezza e momento torcente senza carico esterno chiocciole doppie							
	con classe di pi	recarico C5		con classe di p				
			Classe di tolleranza 3; 5; 7			Classe di tolleranza 3; 5; 7		
	R _{nu}	F _{pr}	T _{p0}	R _{nu}	Fpr	T_{p0}		
$d_0 \times P \times D_w - i$	(N/μm)	(N)	(Nm)	(N/μm)	(N)	(Nm)		
16 x 5R x 3 - 4	320	860	0,06	360	1 230	0,08		
20 x 5R x 3 - 4	400	1 000	0,08	450	1 430	0,11		
25 x 5R x 3 - 4	470	1 110	0,11	330	1 590	0,16		
25 x 10R x 3 - 4	480	1 100	0,11	440	1 570	0,16		
32 x 5R x 3,5 - 4	570	1 510	0,19	640	2 160	0,28		
32 x 10R x 3,969 - 5	770	2 220	0,28	860	3 170	0,41		
40 x 5R x 3,5 - 5	850	2 040	0,33	950	2 910	0,47		
40 x 10R x 6 - 4	760	3 500	0,56	850	5 000	0,80		
40 x 10R x 6 - 6	1 150	5 050	0,81	1 280	7 210	1,15		
40 x 20R x 6 - 3	570	2 650	0,42	640	3 790	0,61		
50 x 5R x 3,5 - 5	1 000	2 240	0,45	1 110	3 200	0,64		
50 x 10R x 6 - 4	900	3 880	0,78	1 010	5 540	1,11		
50 x 10R x 6 - 6	1 350	5 580	1,12	1 510	7 970	1,59		
50 x 20R x 6,5 - 5	1 180	5 300	1,06	1 320	7 570	1,51		
63 x 10R x 6 - 4	1 080	4 330	1,09	1 200	6 180	1,56		
63 x 10R x 6 - 6	1 620	6 220	1,57	1 800	8 880	2,24		
63 x 20R x 6,5 - 5	1 420	5 870	1,48	1 590	8 390	2,11		
80 x 10R x 6,5 - 6	1 870	7 590	2,43	2 070	10 800	3,47		
80 x 20R x 12,7 - 6	2 130	18 400	5,88	2 380	26 300	8,41		

Momenti d'attrito delle guarnizioni

Coppia di tenuta per chiocciole singole e doppie

 T_0 = momento torcente senza carico esterno complessivo

 $T_0 = T_{p0} + T_{RD}$

 T_{RD} = momento torcente senza carico esterno delle 2 guarnizioni

 T_{p0} = momento torcente senza carico esterno senza guarnizione

 d_0 = diametro nominale

P = passo

 D_w = diametro della sfera

per la misurazione del momento torcente senza carico esterno vedi paragrafo "Montaggio" Pagina 147.

Grandezza	Momento torcente senza carico esterno Guarnizione Guarnizione Guarnizione a bas							
	standard	rinforzata	resistenza d'attrito					
d ₀ x P x D _w	T _{RD} ca. (Nm)	T _{RD} ca. (Nm)	T _{RD} = 0 Nm					
6 x 1R x 0,8	_	_	✓					
6 x 2R x 0,8	_	_	√					
8 x 1R x 0,8	_	_	√					
8 x 2R x 1,2	_	_	√					
8 x 2,5R x 1,588	0,015	_	√					
8 x 5R x 1,588	0,015	_	_					
12 x 2R x 1,2	0,030	-	√					
12 x 5R x 2	0,030	-	√					
12 x 10R x 2	0,030	-	√					
16 x 5R x 3	0,080	-	✓					
16 x 5L x 3	0,080	-	✓					
16 x 10R x 3	0,080	-	√					
16 x 16R x 3	0,080	-	✓					
20 x 5R x 3	0,100	_	✓					
20 x 5L x 3	0,100	-	-					
20 x 10R x 3	0,120	-	-					
20 x 20R x 3,5	0,120	-	✓					
20 x 40R x 3,5	0,040	-	✓					
25 x 5R x 3	0,120	0,34	✓					
25 x 5L x 3	0,120	-	-					
25 x 10R x 3	0,150	0,29	✓					
25 x 25R x 3,5	0,200	0,25	✓					
32 x 5R x 3,5	0,250	0,51	✓					
32 x 5L x 3,5	0,250	-	-					
32 x 10R x 3,969	0,250	0,46	√					
32 x 20R x 3,969	0,250	0,49	√					
32 x 32R x 3,969	0,250	0,45	√					
32 x 64R x 3,969	0,250	0,45	√					
40 x 5R x 3,5	0,400	0,85	√					
40 x 5L x 3,5	0,400	_	-					
40 x 10R x 6	0,400	0,91	√					
40 x 10L x 6	0,400	_	_					
40 x 12R x 6	0,400	_	_					
40 x 16R x 6	0,400	-	-					
40 x 20R x 6	0,400	0,54	✓					
40 x 25R x 6	0,400	0,54	-					
40 x 30R x 6	0,400	- 0.54	-					
40 x 40R x 6	0,400	0,54	√					
50 x 5R x 3,5	0,500	-	_					
50 x 10R x 6	0,600	0,95	-					
50 x 12R x 6	0,600	_	_					
50 x 16R x 6	0,600	-	_					
50 x 20R x 6,5	0,600	0,95	_					
50 x 25R x 6,5	0,700	0.05	_					
50 x 30R x 6,5	0,700	0,95	_					
50 x 40R x 6,5	0,700	_	_					
63 x 10R x 6	1,200	1,40	_					
63 x 20R x 6,5 63 x 40R x 6,5	1,200	·						
	1,200	1,40	_					
80 x 10R x 6,5	1,400	_	_					
80 x 20R x 12,7 80 x 40R x 12,7	2,200	_						
00 X 40N X 12,/	2,300	_	_					

Nel rimontare o sostituire le guarnizioni considerare che:

Nel rimontare o sostituire le guarnizioni bisogna considerare che: tutte le viti di precisione con passi piccoli sono ad un principio (figura 1). Risulta pertanto una sola pista di rotolamento delle sfere sulla vite. Le viti di precisione con passi maggiori sono invece realizzate a due o quattro principi (figura 2 e 3).

Sono disponibili, in via opzionale "guarnizioni rinforzate" per viti di precisione. Il colore verde opale della guarnizione e il numero di identificazione contrassegnano questa versione.

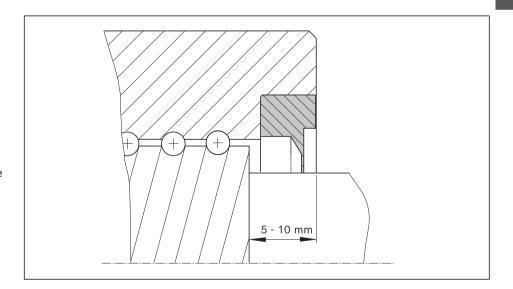

Le guarnizioni a bassa resistenza d'attrito per viti di precisione sono disponibili su richiesta. Il colore marrone rossiccio della guarnizione e il numero di identificazione contrassegnano questa versione.

Figura 2 Guarnizione per vite di precisione a due principi con passo centrale Figura 3 Guarnizione per vite di precisione a quattro principi con passo elevato

Montaggio della guarnizione

Posizionare la chiocciola sulla vite come mostra la figura. Inserire il nasello della guarnizione anulare nell'incavo e premere finché non si innesta nella scanalatura. Ruotare la chiocciola sulla vite per verificare il corretto posizionamento del labbro della guarnizione e rettificarne eventualmente l'allineamento premendo sul lato frontale. Osservare che il labbro della guarnizione non si danneggi.

Istruzioni di montaggio dettagliate sono comprese nella fornitura.

Montaggio

Stato alla consegna

Le unità a sfere Rexroth vengono fornite di norma già con un primo ingrassaggio con Dynalub. Questo ingrassaggio iniziale consente unarilubrificazione con grasso od olio. Sono disponibili cartucce e confezioni di grasso adatte per la rilubrificazione. Se si utilizza un altro lubrificante, verificane la miscelabilità o la compatibilità con l'ingrassaggio iniziale.

In casi particolari, con il codice di ordinazione è possibile unicamente la consegna di una vite a sfere con olio protettivo.

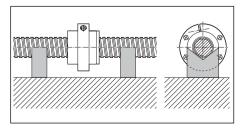
Attenzione

Prima della messa in funzione della macchina, assicurarsi che all'interno della chiocciola risulti il lubrificante selezionato.

Pulizia

Per la sgrassatura e il lavaggio è possibile ricorrere a diversi detergenti:

- detergenti acquosi
- detergenti organici


A Attenzione

Dopo la pulizia, tutte le singole parti devono essere immediatamente asciugate, trattate con olio protettivo o ingrassate (pericolo di ossidazione).

Osservare in ogni caso le normative vigenti (di tutela ambientale e sicurezza sul lavoro) nonché le prescrizioni in merito al detergente utilizzato (ad es. manipolazione).

Magazzinaggio

Le unità viti a sfere sono sistemi di alta qualità e devono essere trattati con la dovuta cautela. Per evitare che si danneggino o si sporchino, gli elementi devono essere conservati nella confezione protettiva fino al momento del montaggio. Priva dell'imballaggio, l'unità va deposta su supporti a forma di V.

Montaggio chiocciole

Chiocciola doppia chiocciola singola precaricata

Queste versioni vengono fornite, in linea di massima, con unità chiocciola già montata sulla vite.

Le unità chiocciola non devono essere smontate dalle viti. Se ciò fosse inevitabile, vi preghiamo di interpellarci.

Nota:

Con vite a sfere dotata di unità di lubrificazione frontale, non svitare la chiocciola e l'unità di lubrificazione frontale dalla vite.

Chiocciola singola con gioco assiale standard Chiocciola singola con gioco assiale ridotto Chiocciola singola con precarico registrabile

L'unità chiocciola deve essere montata su una vite dalle estremità lavorate soltanto con l'ausilio di una bussola di montaggio. Il codolo della vite serve quindi per il centraggio della bussola di montaggio. Con un'estremità vite a forma di "00" è possibile ricorrere, per il montaggio, a un perno di guida con un foro di centraggio frontale a "Z". Il diametro esterno della bussola deve essere inferiore di circa 0,1 mm rispetto al diametro del nocciolo della vite. Nella maggior parte dei casi è possibile utilizzare la bussola fornita con le unità chiocciola.

La parte iniziale della filettatura della vite deve essere conformata con cura allo scopo di evitare danni alla guarnizione ed alle parti interne dell'unità chiocciola.

Qui in seguito sono descritte le singole fasi di montaggio.

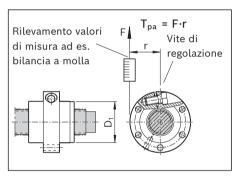
Per lo smontaggio procedere nell'ordine inverso. Queste operazioni richiedono la massima cura per evitare che la chiocciola, la vite e le rispettive parti interne possano essere danneggiate con conseguente prematuro cedimento della vite a sfere.

Singole fasi di montaggio

Procedere al montaggio come segue: Rimuovere l'anello di sicurezza (➡ istruzioni di montaggio) su un lato della bussola di montaggio.

Spingere la bussola di montaggio con chiocciola fino all'inizio della filettatura. La bussola deve essere mantenuta aderente all'appoggio per tutto il tempo dell'operazione.

Ruotare unicamente l'unità chiocciola con una leggera pressione assiale sulla filettatura.


Rimuovere la bussola di montaggio solo quando l'unità chiocciola risulta completamente sulla filettatura della vite.

Precarico della chiocciola singola con precarico registrabile

Misurazione del momento torcente senza carico esterno per SEM-E-S e SEM-E-C. Con la vite di regolazione ridurre il gioco della chiocciola montata sulla vite fino a ottenere il momento torcente senza carico esterno T_{p0} come da tabella → Pagina 140 (vite a sfere leggermente oliata). Il controllo deve essere eseguito su tutta la lunghezza filettata. In caso di scostamento dai valori in tabella, rettificare la registrazione.

Al termine della registrazione, il diametro di centraggio D₁ deve corrispondere ai valori nella tabella → Pagina 38 e 40. Coprire la testa della vite con un tappo di protezione.

T_{pa} = momento torcente senza carico esterno attualmente misurato.

Le istruzioni di montaggio sono comprese in ogni fornitura. Vi preghiamo di interpellarci in caso di ulteriore bisogno.

Montaggio nella macchina

Normalmente, non è necessario eliminare prima del montaggio il mezzo anticorrosione che protegge le viti.

- Se le viti a sfere sono sporche, pulirle e oliarle (vedere paragrafo "Pulizia").
- Inserire il gruppo chiocciola nell'alloggiamento evitando urti ed errori di allineamento.
- Serrare eventualmente le viti di fissaggio con l'ausilio di una chiave dinamometrica. Per la massima coppia di serraggio per l'accoppiamento del materiale acciaio/acciaio (R_m ≥ 370 N/ mm²), consultare la tabella.

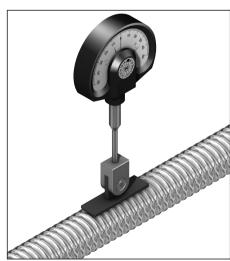
Accoppiamento del materiale acciaio/acciaio			
Diametro	Coppia di serraggio (Nm)		
della vite	Classi di	resistenza	
(mm)	secondo	secondo DIN ISO 898	
	8.8	10.9	12.9
M3	1,3	1,8	2,1
M4	2,7	3,8	4,6
M5	5,5	8,0	9,5
M6	9,5	13,0	16,0
M8	23,0	32,0	39,0
M10	46,0	64,0	77,0
M12	80,0	110,0	135,0
M14	125,0	180,0	215,0
M16	195,0	275,0	330,0
M18	280,0	400,0	470,0
M20	390,0	560,0	650,0

Per l'accoppiamento dei materiali acciaio/ alluminio o alluminio/alluminio (R_m ≥ 280 N/mm²) valgono le coppie di serraggio massime della tabella seguente. In caso di serraggio in alluminio, la lunghezza di avvitamento deve essere pari a 1,5 volte il diametro della vite.

Viti di fissaggio

A Se soggette a sollecitazioni elevate, controllare sempre la sicurezza costruttiva delle viti!

Accoppiamento del materiale acciaio/ alluminio e alluminio/alluminio Diametro Coppia di serraggio (Nm) della vite Classi di resistenza secondo			
(mm)	DIN ISO 8		Secondo
,	8.8	10.9	12.9
M3	1,2	1,2	1,2
M4	2,4	2,4	2,4
M5	4,8	4,8	4,8
M6	8,5	8,5	8,5
M8	20,0	20,0	20,0
M10	41,0	41,0	41,0
M12	70,0	70,0	70,0
M14	110,0	110,0	110,0
M16	175,0	175,0	175,0
M18	250,0	250,0	250,0
M20	345,0	345,0	345,0


Coppie di serraggio per viti di fissaggio secondo VDI 2230 per $\mu_G = \mu_K = 0,125$

Allineamento della vite a sfere nella macchina

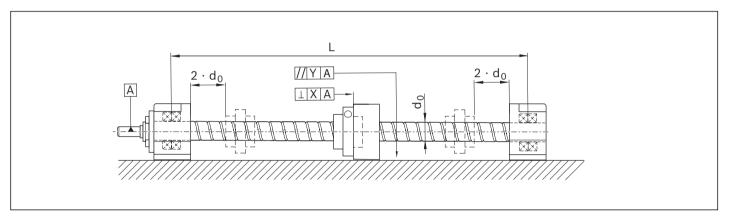
Per agevolare l'allineamento della vite a sfere, Rexroth mette a disposizione una sonda¹⁾ con superficie ribaltabile sulla vite.

Sono disponibili due pattini di misura di lunghezze differenti, utilizzati in funzione del passo della vite:

- N° di identificazione R3305 131 19 lunghezza 33 mm per passi < 20
- N° di identificazione R3305 131 21 lunghezza 50 mm per passi > 20

1) L'indicatore a quadrante non è compreso nella fornitura

Tolleranze di montaggio


Attenzione

Qualsiasi errore di allineamento può provocare il cedimento prematuro della vite a sfere!

Per ottenere con una vite a sfere la durata di vita calcolata e la prestazione prevista occorre tener conto dei requisiti e delle limitazioni dell'intero sistema. Gli azionamenti a vite non sono indicati per la trasmissione di forze radiali e momenti (ad es. per via di montaggio angolato). I paragrafi che seguono mostrano i principi più importanti per una costruzione conforme ai requisiti e adeguata al sistema.

Per l'utilizzo di unità viti a sfere sono indicate tolleranze di montaggio da osservare per la configurazione della costruzione adiacente. Il linea di massima vale: quanto maggiore la precisione e il precarico della vite a sfere, tanto più precisa dovrà essere realizzata anche la costruzione adiacente.

Ciò vale soprattutto per applicazioni in cui la chiocciola si sposta in prossimità del cuscinetto d'estremità, poiché in questa zona è molto grande il pericolo di deformazioni e, pertanto, di carichi supplementari.

Errore di parallelismo e indicazione dell'ortogonalità fra l'asse della vite e la superficie di contatto del supporto della chiocciola

= distanza dei cuscinetti d'estremità

(mm)

= diametro nominale della vite

(mm)

= scostamento di ortogonalità ammesso:

La superficie tollerata deve risultare tra due piani

a distanza X, perpendicolari all'asse di riferimento. (mm)

= errore di parallelismo ammesso tra la guida

e asse della vite a sfere (mm)

La tabella accanto mostra tolleranze di montaggio più importanti consigliate per unità viti a sfere in funzione del precarico.

Rientra in queste tolleranze di montaggio l'ortogonalità della costruzione annessa delle chiocciole rispetto all'asse della vite. Osservare inoltre le tolleranze per il parallelismo fra guida e asse della vite a sfere.

Distanza minima tra la chiocciola e i cuscinetti d'estremità > 2 • d₀

Qualsiasi errore di allineamento può causare il cedimento prematuro della vite a sfere!

Opzione	X	Y
Precarico	(mm)	(mm)
Gioco assiale	0,04	0,04
Precaricato	0,02	0,02

Lubrificazione

Istruzioni generali di lubrificazione

▶ Tutti i dati relativi alla lubrificazione si basano su valori sperimentali ed esperienze sul campo e sono raccomandazioni di Bosch Rexroth.

▲ Non è consentito l'utilizzo di lubrificanti con additivi solidi (quali, ad esempio, grafite e MoS₂)!

A Se si utilizzano lubrificanti diversi da quelli indicati, non si escludono eventualmente intervalli di rilubrificazione ridotti, nonché minori prestazioni in termini di corsa breve e capacità di carico. Attenzione anche a possibili interazioni chimiche tra plastiche, lubrificanti e mezzi anticorrosione.

A Se l'applicazione comporta sfide ambientali complesse (quali camera bianca, vuoto, uso alimentare, alimentazione di fluidi forti o aggressivi, temperature estreme), vi preghiamo di contattarci, poiché in questo caso sarà necessario un controllo separato ed eventualmente una selezione individuale dei lubrificanti. Tenete a portata di mano tutte le informazioni relative alla vostra applicazione.

A Per l'impiego in settori quali: alimentare, camera bianca, vuoto ecc., oppure con temperature estreme o alimentazione di fluidi, l'ingrassaggio iniziale e il mezzo protettivo standard, in fabbrica, non sono adatti o compatibili con il lubrificante utilizzato per la rilubrificazione. Vi preghiamo di consultarci!

Al più tardi dopo 2 anni si richiede la rilubrificazione anche in condizioni d'esercizio normali per via dell'invecchiamento del grasso. Osservare i fattori di carico ridotti riportati nelle Note tecniche.

- ▶ in generale, la quantità di lubrificante non deve essere introdotta in un unico processo, ma spesso, in piccole quantità.
- ► Con corsa breve (corsa ≤ lunghezza chiocciola L) si consiglia di eseguire più spesso una corsa di lubrificazione. In questo caso sussiste il pericolo, tra gli altri, di calo dei lubrificanti a bassa viscosità. Osservare la nota in merito alla riduzione del fattore di carico come da "Note tecniche" Pagina 133. Se si ricorre a corsa breve consultare i nostri centri regionali. Troverete il vostro referente locale all'indirizzo: www.boschrexroth.com/contact

$Lubrificazione \ a \ grasso \ con \ ingrassatori \ a \ siringa \ o \ impianti \ progressivi \ per \ unità \ viti \ a \ sfere > \emptyset \ 12 \ mm$

Grasso lubrificante

Consigliamo Dynalub 510 con le proprietà seguenti:

- grasso ad alte prestazioni saponificato al litio della classe 2 NLGI secondo DIN 51818 (KP2K-20 secondo DIN 51825)
- buona resistenza all'acqua
- resistenza alla corrosione
- campo di temperatura: da -20 a +80 °C

Il grasso omogeneo a fibre corte si presta perfettamente in condizioni ambientali convenzionali per la lubrificazione di elementi lineari:

- per carichi fino al 50% C
- per applicazioni a corsa breve > 1 mm
- per il range di velocità ammesso con unità viti a sfere

Il foglio delle specifiche del prodotto e la scheda informativa di sicurezza sono disponibili sulla nostra pagina Web all'indirizzo www.boschrexroth.de. Osservare anche le indicazioni a Pagina 168!

Numeri di identificazione per Dynalub 510:

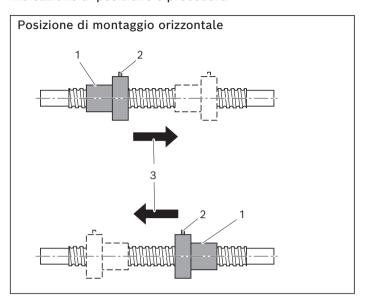
- R3416 037 00 (cartuccia da 400 g)
- R3416 035 0 0 (fustino da 25 kg)

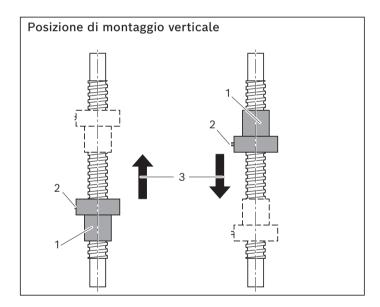
Prima lubrificazione dell'unità viti a sfere (lubrificazione iniziale)

Le unità viti a sfere completamente montate di Ø superiore a 12 mm sono di serie soggette a ingrassaggio iniziale in fabbrica con Dynalub 510.

Per consegna di singoli componenti (chiocciola su bussola di montaggio) o per versioni prive di ingrassaggio iniziale in fabbrica, introdurre nel foro di lubrificazione della chiocciola, prima della messa in funzione, una quantità doppia di lubrificante come da tabella "Quantità di lubrificante - rilubrificazione".

Osservare quanto indicato in merito a posizione e procedura (vedi figura in basso).

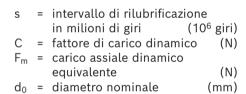

Con impianti progressivi accertarsi che tutti i condotti e distributori (compreso il raccordo alla chiocciola BASA) siano già riempiti prima di procedere a una lubrificazione iniziale o rilubrificazione.

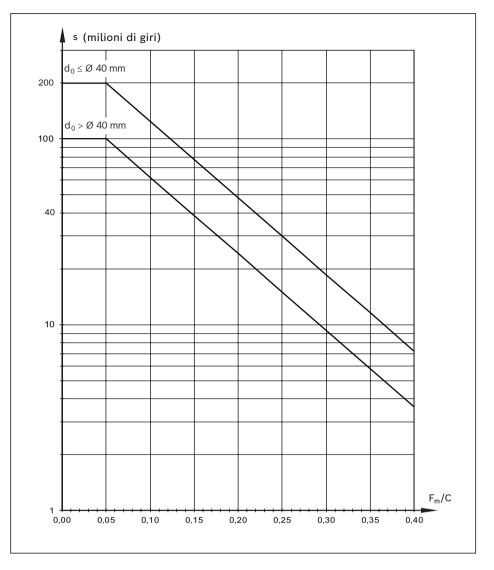

Rilubrificazione dell'unità viti a sfere

Una volta raggiunto l'intervallo di rilubrificazione secondo il diagramma a Pagina 152, introdurre la quantità di rilubrificazione come da tabella "Quantità di lubrificante - rilubrificazione" a pagina 154.

Osservare la posizione della chiocciola e la distanza percorsa come riportato nella figura "Indicazione di posizione e procedura".

Indicazione di posizione e procedura




- 1 Posizione della chiocciola durante la lubrificazione
- 2 Flangia con raccordo di lubrificazione (per posizione di montaggio orizzontale il raccordo dovrebbe risultare possibilmente in alto)
- 3 Direzione di traslazione dopo la lubrificazione. Distanza percorsa corrispondente almeno a 3 volte la lunghezza chiocciola.

Intervalli di rilubrificazione in funzione del carico per lubrificazione a grasso con ingrassatori a siringa o impianti progressivi per unità viti a sfere > Ø 12 mm ("assi asciutti")

Vale alle condizioni seguenti:

- grasso lubrificante Dynalub 510 o, in alternativa, Castrol Longtime PD 2, Elkalub GLS 135/N2
- nessuna alimentazione di fluidi
- guarnizioni standard
- vite rotante
- nessun funzionamento ipercritico
- temperatura ambiente: T = da 10 a 40 °C

Conversione dell'intervallo di rilubrificazione s da giri in milioni a chilometri:

s in chilometri =
$$\frac{\text{s in milioni (giri)} \cdot \text{passo P (mm)}}{10^6}$$

Esempio:

s in chilometri =
$$\frac{200 \cdot 10^6 \text{ (giri)} \cdot 16 \text{ (mm)}}{10^6}$$
 = 3200 km

Avvertenze

Il rapporto di carico F_m/C descrive il quoziente risultante dal carico assiale dinamico equivalente F_m e dal fattore di carico dinamico C (vedi "Calcoli").

In caso di condizioni d'esercizio estreme, vi preghiamo di contattarci poiché in questo caso è necessaria una progettazione a parte degli intervalli di lubrificazione.

Tra queste condizioni d'esercizio rientrano numeri di giri piccoli, medi nm, elevate temperature ambiente e carichi elevati $F_m/C > 0,4$.

Se si ricorre a un impianto progressivo, osservare il dosaggio minimo di 0,03 cm3.

A tal proposito, si prega di far riferimento alle indicazioni generali sulla lubrificazione alla pagina 149.

Lubrificazione con ingrassatori a siringa o impianti progressivi per unità viti a sfere > Ø 12 mm

Quantità di lubrificante - rilubrificazione

Grandezza	Rilubrificazione – quantità di lubrificante (cm³)		
	FED-E-B / FEM-E-B / FEM-E-S / FEP-E-S	ZEV-E-S	FDM-E-B / FDM-E-S
$d_0 \times P \times D_w - i$	SEM-E-C / SEM-E-S / ZEM-E-K / ZEM-E-A		
16x5Rx3 - 3	-	0,9	_
16x5R/Lx3 - 4	0,70	_	1,75
16x10Rx3 - 3	0,85	1,10	_
16x16Rx3 - 2	0,95	-	_
16x16Rx3 - 3	1,20	_	_
16x16Rx3 - 6	1,35	_	_
20x5R/Lx3 - 4	1,00	1,30	2,95
20x5Rx3 - 5	1,15	_	_
20x10Rx3 - 4	1,50	_	_
20x20Rx3,5 - 2	1,85	_	_
20x20Rx3,5 - 3	2,40	_	_
20x20Rx3,5 - 6	2,50	_	_
20x40Rx3,5 - 4	1,75	_	_
25x5R/Lx3 - 4	1,75		3,50
	1,50	1 05	3,30
25x5Rx3 - 7		1,95	
25x10Rx3 - 4	1,85		4,15
25x10Rx3 - 5		2,05	-
25x25Rx3,5 - 2	2,65		-
25x25Rx3,5 - 3	3,45	_	_
25x25Rx3,5 - 4,8	1,65	-	_
25x25Rx3,5 - 6	3,90	_	_
32x5Lx3,5 - 4	2,50	_	_
32x5Rx3,5 - 4	2,15	_	4,90
32x5Rx3,5 - 5	_	2,40	_
32x10Rx3,969 - 5	3,05	3,25	6,65
32x20Rx3,969 - 2	2,80	-	_
32x20Rx3,969 - 3	3,55	_	_
32x20Rx3,969 - 6	3,70	_	_
32x32Rx3,969 - 2	4,05	_	_
32x32Rx3,969 - 3	5,45	_	_
32x32Rx3,969 - 4,8	 	_	_
32x32Rx3,969 - 6	6,20	_	_
32x64Rx3,969 - 4	3,35	_	_
40x5Lx3,5 - 5	3,35	_	_
40x5Rx3,5 - 5	2,95	_	7,60
40x10Lx6 - 4	6,50		-
40x10Ex6 - 4	6,65		16,75
			10,75
40x10Rx6 - 5	7,70	_	
40x10Rx6 - 6	8,15	_	19,70
40x12Rx6 - 4	6,75	-	21.25
40x16Rx6 - 4	9,15	-	21,35
40x20Rx6 - 3	8,70	-	20,55
40x20Rx6 - 8	9,35	-	_
40x25Rx6 - 4	10,84		-
40x25Rx6 - 8	10,99	_	
40x30Rx6 - 4	11,95		_
40x30Rx6 - 8	12,29	_	
40x40Rx6 - 2	10,40	-	-
40x40Rx6 - 3	14,30	-	-
40x40Rx6 - 6	15,00	-	_
-			·

Grandezza	Rilubrificazione – quantità di lubrificante (cm³)	ı	
	FED-E-B / FEM-E-B / FEM-E-S / FEP-E-S	ZEV-E-S	FDM-E-B / FDM-E-S
d ₀ x P x D _w - i	SEM-E-C / SEM-E-S / ZEM-E-K / ZEM-E-A		
50x5Rx3,5 - 5	4,65	_	11,70
50x10Rx6 - 4	-	_	21,90
50x10Rx6 - 6	10,75	_	25,55
50x12Rx6 - 6	11,60	_	_
50x16Rx6 - 6	16,15	_	_
50x20Rx6,5 - 3	12,65	_	_
50x20Rx6,5 - 5	17,35	_	34,75
50x20Rx6,5 - 8	9,90	_	_
50x30Rx6,5 - 4	14,73	_	_
50x30Rx6,5 - 8	14,81	_	
50x25Rx6,5 - 4	14,20	_	_
50x25Rx6,5 - 6	10,45	_	_
50x40Rx6,5 - 2	15,45	_	_
50x40Rx6,5 - 3	20,65	_	_
50x40Rx6,5 - 6	19,15	_	_
63x10Rx6 - 4	_	_	25,55
63x10Rx6 - 6	12,15	_	30,00
63x20Rx6,5 - 3	15,45	_	_
63x20Rx6,5 - 5	21,35	_	43,75
63x20Rx6,5 - 8	14,35	_	_
63x40Rx6,5 - 2	18,90	_	_
63x40Rx6,5 - 3	25,40	_	-
63x40Rx6,5 - 6	26,95	-	-
80x10Rx6,5 - 6	19,10	-	66,00
80x20Rx12,7 - 6	65,50	_	132,75
80x40Rx12,7 - 4	72,84	_	_

Nota: le grandezze elencate nella tabella non sono disponibili per tutti i tipi di chiocciola. La gamma attuale delle grandezze è riportata al capitolo Chiocciole a partire da Pagina 24.

Rilubrificazione per chiocciola rotante FAR

Per grasso della classe 2 NLGI (mediante ingrassatore a siringa manuale)

Per FAR con o senza trasmissione a cinghia e puleggia vale:

- rilubrificabile con grasso della classe 2 NLGI sul raccordo di lubrificazione fisso dell'anello esterno del cuscinetto da fermo
- vite raffreddata a liquido su richiesta
- lubrificazione opzionale lungo la vite

La chiocciola rotante può essere alimentata con grasso lungo l'anello esterno del cuscinetto di vincolo assiale a doppia corona di sfere a contatto obliquo. Tenere unicamente presente che durante la lubrificazione la chiocciola deve restare ferma. La posizione della chiocciola sulla vite è invece indifferente. Si risolve così, in modo semplice, il problema di un raccordo di lubrificazione rotante sulla chiocciola stessa.

Sono previsti due raccordi di lubrificazione (M6) con accesso radiale o assiale. Alla consegna, entrambi sono chiusi con spine filettate. Per aprire il raccordo di lubrificazione desiderato rimuovere la spina filettata.

Grandezza FAR	Grandezza BASA	Quantità di rilubrificazione (cm ³)
Grandozza i / iii	d ₀ x P x D _w - i	quantità di masimoazione (em)
32	32 x 10R x 3,969 - 5	3,5
	32 x 20R x 3,969 - 3	4,0
	32 x 32R x 3,969 - 3	6,0
40	40 x 10R x 6 - 5	8,4
	40 x 20R x 6 - 3	9,8
	40 x 40R x 6 - 3	16,1
50	50 x 10R x 6 - 6	12,2
	50 x 20R x 6,5 - 5	19,5
	50 x 40R x 6,5 - 3	23,3
63	63 x 10R x 6 - 6	13,8
	63 x 20R x 6,5 - 5	24,0
	63 x 40R x 6,5 - 3	28,7

Lubrificazione con grasso fluido con impianti di lubrificazione ininterrotta a perdita totale mediante distributori a pistone e lubrificazione con grasso fluido per unità viti a sfere ≤ Ø 12 mm

Grasso lubrificante

Consigliamo Dynalub 520 con le proprietà seguenti:

- grasso ad alte prestazioni saponificato al litio della classe NLGI 00 secondo DIN 51818 (GP00K-20 secondo DIN 51826)
- Buona resistenza all'acqua
- resistenza alla corrosione
- campo di temperatura: da -20 a +80 °C

Il grasso omogeneo a fibre corte si presta perfettamente a condizioni ambientali convenzionali per la lubrificazione di elementi lineari:

- in impianti a lubrificazione ininterrotta e centralizzata
- per carichi fino al 50% C
- per applicazioni a corsa breve > 1 mm
- per il range di velocità ammesso con unità viti a sfere
- per versioni in miniatura

Il foglio delle specifiche del prodotto e la scheda informativa di sicurezza sono disponibili sulla nostra pagina Web all'indrizzo www.boschrexroth.de. Osservare anche le indicazioni a Pagina 168!

Numeri di identificazione per Dynalub 520:

- R3416 043 00 (cartuccia da 400 g)
- R3416 042 00 (secchio da 5 kg)
- R0419 090 01 (kit di manutenzione 5 ml)

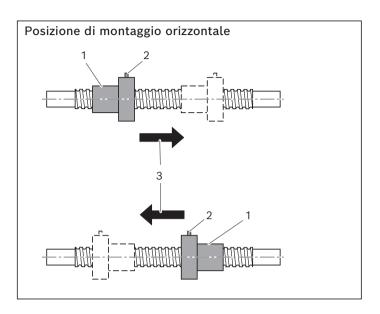
Prima lubrificazione dell'unità viti a sfere (lubrificazione iniziale)

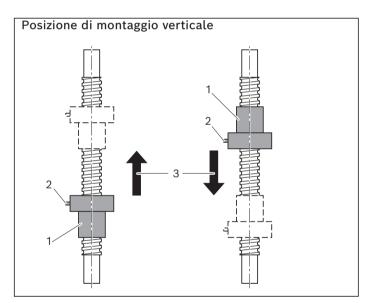
Le unità viti a sfere completamente montate di Ø inferiore a 12 mm sono di serie soggette a ingrassaggio iniziale in fabbrica con Dynalub 520.

Per consegna di singoli componenti (chiocciola su bussola di montaggio) o per versioni prive di ingrassaggio iniziale in fabbrica, introdurre nel foro di lubrificazione della chiocciola, prima della messa in funzione, una quantità doppia di lubrificante come da tabella "Quantità di lubrificante - rilubrificazione" a pagina 160.

Osservare quanto indicato in merito a posizione e procedura nella figura in basso.

Per impianti di lubrificazione ininterrotta a perdita totale osservare che tutti i condotti e distributori a pistone (compreso il raccordo alla chiocciola BASA) siano già pieni di lubrificante prima di procedere a una lubrificazione iniziale o rilubrificazione. Per unità viti a sfere ≤ Ø 12 mm si consiglia di ricorrere al kit di manutenzione.

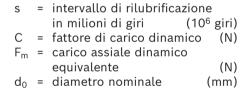

Rilubrificazione dell'unità viti a sfere

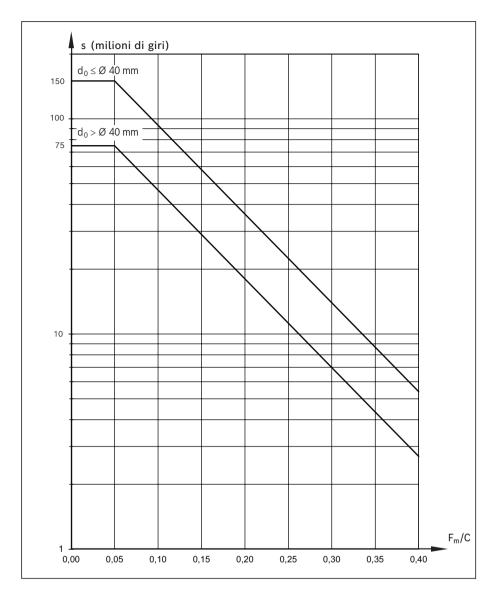

Introdurre sul raccordo di lubrificazione la quantità di rilubrificazione come da tabella "Quantità di lubrificante rilubrificazione" a pagina 160 fino al raggiungimento dell'intervallo di rilubrificazione secondo diagramma a Pagina 158 Il numero di impulsi necessario a tale scopo corrisponde al guoziente intero risultante dalla quantità di rilubrificazione come da tabella "Quantità di lubrificante - rilubrificazione" a pagina 160 e dalle dimensioni del distributore a pistone.

Non devono essere qui oltrepassate le dimensioni del distributore a pistone minime ammesse di 0,03 cm³.

Il ciclo di lubrificazione risulta quindi dalla divisione dell'intervallo di rilubrificazione per il numero di impulsi rilevato. Osservare la posizione della chiocciola e la distanza percorsa come riportato nella figura "Indicazione di posizione e procedura".

Indicazione di posizione e procedura




- 1 Posizione della chiocciola durante la lubrificazione
- 2 Flangia con raccordo di lubrificazione (per posizione di montaggio orizzontale il raccordo dovrebbe risultare possibilmente in alto)
- 3 Direzione di traslazione dopo la lubrificazione. Distanza percorsa corrispondente almeno a 3 volte la lunghezza chiocciola.

Intervalli di rilubrificazione in funzione del carico con impianti di lubrificazione ininterrotta a perdita totale mediante distributori a pistone e lubrificazione con grasso fluido per unità viti a sfere $\leq \varnothing$ 12 mm ("assi asciutti")

Vale alle condizioni seguenti:

- grasso lubrificante Dynalub 520
 o, in alternativa, Castrol
 Longtime PD 00, Elkalub GLS
 135/N00
- nessuna alimentazione di fluidi
- guarnizioni standard
- vite rotante
- nessun funzionamento ipercritico
- temperatura ambiente: T = da 10 a 40 °C

Conversione dell'intervallo di rilubrificazione s da giri in milioni a chilometri:

Esempio:

s in chilometri =
$$\frac{37.5 \cdot 10^6 \text{ (giri)} \cdot 16 \text{ (mm)}}{10^6}$$
 = 600 km

Avvertenze

Il rapporto di carico F_m/C descrive il quoziente risultante dal carico assiale dinamico equivalente F_m e dal fattore di carico dinamico C (vedi "Calcoli").

In caso di condizioni d'esercizio estreme, vi preghiamo di contattarci poiché in questo caso è necessaria una progettazione a parte degli intervalli di lubrificazione.

Tra queste condizioni d'esercizio rientrano numeri di giri piccoli, medi nm, elevate temperature ambiente e carichi elevati $F_m/C > 0.4$.

Se si ricorre a un impianto di lubrificazione ininterrotta a perdita totale non è consentito che vengano oltrepassate le dimensioni del distributore a pistone minime ammesse di 0,03 cm³.

Consigliamo l'impiego di distributori a pistoni della ditta SKF. Essi dovrebbero essere installati quanto più vicino possibile al raccordo di lubrificazione della chiocciola.

Evitare lunghezze elevate e diametri ridotti delle condotte; le condotte devono essere installate in ascesa. Se risultano altre utenze interconnesse all'impianto di lubrificazione ininterrotta a perdita totale, l'elemento più debole della catena definisce il ciclo di lubrificazione.

I serbatoi delle pompe o quelli di riserva per il lubrificante devono essere equipaggiati con agitatore o pistone successivo per garantire il flusso del lubrificante (evitare la formazione di mulinelli nel serbatoio).

Osservare le indicazioni generali per la lubrificazione a pagina 149.

Lubrificazione con grasso fluido con impianti di lubrificazione ininterrotta a perdita totale mediante distributori a pistone e lubrificazione con grasso fluido per unità viti a sfere ≤ Ø 12 mm

Quantità di lubrificante - rilubrificazione

Grandezza	Rilubrificazione – quantità di lubrificante (cm³)		
	FED-E-B / FEM-E-B / FEM-E-S / FEP-E-S	ZEV-E-S	FDM-E-B / FDM-E-S
d ₀ x P x D _w - i	SEM-E-C / SEM-E-S / ZEM-E-S / ZEM-E-K / ZEM-E-A		
6x1Rx0,8-3	0,05	_	_
6x2Rx0,8-3	0,05	_	-
8x1Rx0,8-4	0,06	_	-
8x2Rx1,2-4	0,07	_	-
8x2,5Rx1,588-3	0,11	_	_
8x2,5Rx1,588-4	-	0,14	_
8x5Rx1,588-3	0,12	-	_
12x2Rx1,2-4	0,17	_	_
12x5Rx2-3	0,33	0,33	_
12x10Rx2-2	0,33	0,33	-
16x5Rx3-3	-	0,90	_
16x5R/Lx3-4	0,70	-	1,75
16x10Rx3-3	0,85	1,10	_
16x16Rx3-2	0,95	_	-
16x16Rx3-3	1,20	-	-
16x16Rx3-6	1,35	-	-
20x5R/Lx3-4	1,00	1,30	2,95
20x5Rx3-5	1,15	_	-
20x10Rx3-4	1,50	_	-
20x20Rx3,5-2	1,85	_	_
20x20Rx3,5-3	2,40	_	
20x20Rx3,5-6	2,50	_	
20x40Rx3,5-4	1,75	_	-
25x5R/Lx3-4	1,50	-	3,50
25x5Rx3-7	-	1,95	-
25x10Rx3-4	1,85		4,15
25x10Rx3-5 25x25Rx3,5-2	2,65	2,05	
25x25Rx3,5-3 25x25Rx3,5-4,8	3,45 1,65		
25x25Rx3,5-6	3,90	_	_
32x5Lx3,5-4	2,50	_	_
32x5Rx3,5-4	2,15	_	4,90
32x5Rx3,5-5	-	2,40	-
32x10Rx3,969-5	3,05	3,25	6,65
32x20Rx3,969-2	2,80	-	-
32x20Rx3,969-3	3,55	_	_
32x20Rx3,969-6	3,70	_	_
32x32Rx3,969-2	4,05	_	_
32x32Rx3,969-3	5,45	_	_
32x32Rx3,969-4,8		_	_
32x32Rx3,969-6	6,20	-	-
32x64Rx3,969-4	3,35	-	-
40x5Lx3,5-5	3,35	-	-
40x5Rx3,5-5	2,95	-	7,60
40x10Lx6-4	6,50	-	-
40x10Rx6-4	6,65	-	16,75
40x10Rx6-5	7,70	-	-
40x10Rx6-6	8,15	_	19,70
40x12Rx6-4	6,75	_	-
40x16Rx6-4	9,15	_	21,35
40x20Rx6-3	8,70	-	20,55
40x20Rx6-8	9,35	_	_
40x25Rx6-4	10,84	_	-
40x25Rx6-8	11,00	_	-
40x30Rx6-4	11,95	-	-
40x30Rx6-8	12,20	_	_

Grandezza	Rilubrificazione – quantità di lubrificante (cm³)		
	FED-E-B / FEM-E-B / FEM-E-S / FEP-E-S	ZEV-E-S	FDM-E-B / FDM-E-S
d ₀ x P x D _w - i	SEM-E-C / SEM-E-S / ZEM-E-S / ZEM-E-K / ZEM-E-A		
40x40Rx6-2	10,40	-	-
40x40Rx6-3	14,30	-	-
40x40Rx6-6	15,00	-	-
50x5Rx3,5-5	4,65	-	11,70
50x10Rx6-4	-	-	21,90
50x10Rx6-6	10,75	-	25,55
50x12Rx6-6	11,60	-	-
50x16Rx6-6	16,15	-	-
50x20Rx6,5-3	12,65	-	-
50x20Rx6,5-5	17,35	-	34,75
50x20Rx6,5-8	9,90	-	-
50x25Rx6,5-6	10,45	-	-
50x30Rx6,5-4	14,73	-	-
50x30Rx6,5-6	14,80	-	-
50x40Rx6,5-2	15,45	-	-
50x40Rx6,5-3	20,65	-	-
50x40Rx6,5-6	19,15	-	-
63x10Rx6-4	-	-	25,55
63x10Rx6-6	12,15	-	30,00
63x20Rx6,5-3	15,45	-	
63x20Rx6,5-5	21,35	-	43,75
63x20Rx6,5-8	14,35	_	-
63x40Rx6,5-2	18,90	-	-
63x40Rx6,5-3	25,40	-	-
63x40Rx6,5-6	26,95	-	
80x10Rx6,5-6	19,10	-	66,00
80x20Rx12,7-6	65,50	-	132,75
80x40Rx12,7-4	72,84	_	_

Nota: le grandezze elencate nella tabella non sono disponibili per tutti i tipi di chiocciola. La gamma attuale delle grandezze è riportata al capitolo Chiocciole a partire da Pagina 24.

Lubrificazione a olio con impianti di lubrificazione ininterrotta a perdita totale mediante distributori a pistone

Olio lubrificante

Consigliamo Shell Tonna S 220 con le proprietà seguenti:

- olio speciale demulsificante CLP o CGLP secondo DIN 51517-3 per guide bancali e guide per attrezzi
- miscela composta di oli minerali altamente raffinati e additivi
- utilizzabile anche in caso di intensa miscelazione con lubrorefrigeranti

Prima lubrificazione dell'unità viti a sfere (lubrificazione iniziale)

Le unità viti a sfere completamente montate di Ø inferiore a 12 mm sono di serie soggette a ingrassaggio iniziale in fabbrica con Dynalub 520.

Le unità viti a sfere completamente montate di Ø superiore a 12 mm sono di serie soggette a ingrassaggio iniziale in fabbrica con Dynalub 510.

Per consegna di singoli componenti (chiocciola su bussola di montaggio) o per versioni speciali prive di ingrassaggio iniziale in fabbrica, introdurre nel foro di lubrificazione della chiocciola, prima della messa in funzione, la quantità di prima lubrificazione come da tabella "Quantità di lubrificante - lubrificazione a olio" a pagina 162.

Osservare quanto indicato in merito a posizione e procedura nella figura in basso.

Per impianti di lubrificazione ininterrotta a perdita totale osservare che tutti i condotti e distributori a pistone (compreso il raccordo alla chiocciola BASA) siano già pieni di lubrificante prima di procedere a una lubrificazione iniziale o rilubrificazione.

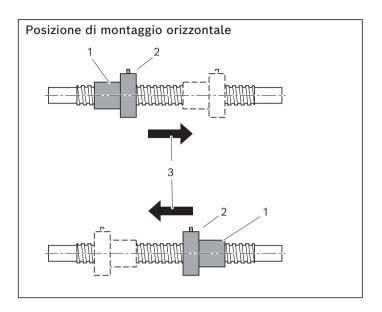
Rilubrificazione dell'unità viti a sfere

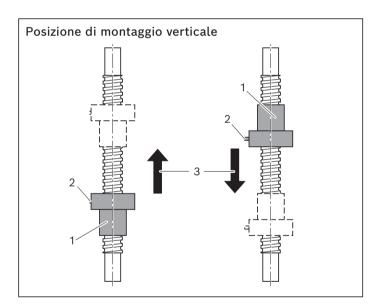
Introdurre sul raccordo di lubrificazione la quantità di rilubrificazione come da tabella "Quantità di lubrificante lubrificazione a olio" a pagina 162 fino al raggiungimento dell'intervallo di rilubrificazione secondo diagrammi Pagina 164.

Il numero di impulsi necessario a tale scopo corrisponde al quoziente intero risultante dalla quantità di rilubrificazione come da tabella "Quantità di lubrificante - lubrificazione a olio" a pagina 162 e dalle dimensioni del distributore a pistone.

Non devono essere qui oltrepassate le dimensioni del distributore a pistone minime ammesse 0,03 cm³.

Il ciclo di lubrificazione risulta quindi dalla divisione dell'intervallo di rilubrificazione per il numero di impulsi rilevato. Osservare la posizione della chiocciola e la distanza percorsa come riportato nella figura "Indicazione di posizione e procedura".

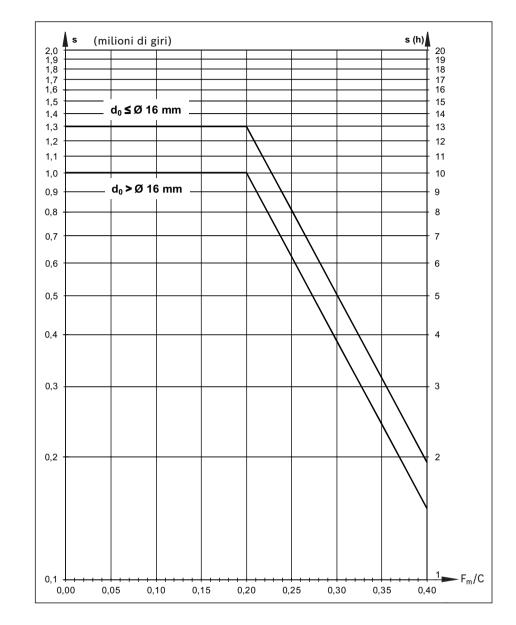

Quantità di lubrificante - lubrificazione a olio


Nota:

Con chiocciole singole flangiate a due principi FED-E-B e lubrificazione a olio, le quantità per la prima e la rilubrificazione aumentano del 20%.

Diametro nominale	Prima lubrificazione	Rilubrificazione
d_0 (mm)	V _e (cm ³)	V _n (cm ³)
6 / 8 / 12 / 16	0,3	0,03
20/25/32	0,6	0,06
40	2,0	0,40
50 / 63	4,0	0,80
80	8,0	1,60

Indicazione di posizione e procedura




- 1 Posizione della chiocciola durante la lubrificazione
- 2 Flangia con raccordo di lubrificazione (per posizione di montaggio orizzontale il raccordo dovrebbe risultare possibilmente in alto)
- 3 Direzione di traslazione dopo la lubrificazione. Distanza percorsa corrispondente almeno a 3 volte la lunghezza chiocciola.

Intervalli di rilubrificazione in funzione del carico per lubrificazione a olio con impianti di lubrificazione ininterrotta a perdita totale mediante distributori a pistone ("assi asciutti")

- olio lubrificante Shell Tonna S 220
- nessuna alimentazione di fluidi
- guarnizioni standard
- vite rotante
- nessun funzionamento ipercritico
- temperatura ambiente:
- T = da 10 a 40 °C

L'intervallo di rilubrificazione s viene determinato dal numero di giri in milioni o dal tempo di funzionamento in h. Il valore raggiunto per primo definisce l'intervallo di lubrificazione.

Conversione dell'intervallo di rilubrificazione s da giri in milioni a chilometri:

s in chilometri =
$$\frac{\text{s in milioni (giri)} \cdot \text{passo P (mm)}}{10^6}$$

Esempio:

s in chilometri =
$$\frac{1.3 \cdot 10^6 \text{ (giri)} \cdot 16 \text{ (mm)}}{10^6}$$
 = 20,8 km

Avvertenze

Il rapporto di carico F_m/C descrive il quoziente risultante dal carico assiale dinamico equivalente F_m e il fattore di carico dinamico C (vedi "Calcoli").

In caso di condizioni d'esercizio estreme, vi preghiamo di contattarci poiché in questo caso è necessaria una progettazione a parte degli intervalli di lubrificazione. Tra queste condizioni d'esercizio rientrano numeri di giri piccoli, medi nm, elevate temperature ambiente e carichi elevati $F_m/C > 0,4$.

Se si ricorre a un impianto di lubrificazione ininterrotta a perdita totale non è consentito che vengano oltrepassate le dimensioni del distributore a pistone minime ammesse di 0,03 cm³.

Consigliamo l'impiego di distributori a pistoni della ditta SKF. Essi dovrebbero essere installati quanto più vicino possibile al raccordo di lubrificazione della chiocciola.

Evitare lunghezze elevate e diametri ridotti delle condotte; le condotte devono essere installate in ascesa.

Se risultano altre utenze interconnesse all'impianto di lubrificazione ininterrotta a perdita totale, l'elemento più debole della catena definisce il ciclo di lubrificazione.

Osservare le indicazioni generali per la lubrificazione a pagina 149.

Lubrificazione a olio con impianti di lubrificazione ininterrotta a perdita totale mediante distributori a pistone

Esempio di progettazione per la lubrificazione di un'applicazione tipica a 2 assi con lubrificazione centralizzata

Asse X

Componente o parametro	Specifiche
Vite a sfere	FEM-E-S 32x10Rx3,969-5; C = 38 000 N; n° di identificazione: R 1512 340 13 (Pagina 34)
Carico assiale dinamico equivalente	F _m = 9 510 N
Corsa	1 000 mm
Regime medio di giri	n _m = 1 000 min ⁻¹
Temperatura ambiente	da 10 a 40 °C
Posizione di montaggio	Orizzontale
Lubrificazione	Impianto di lubrificazione ininterrotta a perdita totale per tutti gli assi con olio Shell Tonna S 220
Alimentazione	Nessuna alimentazione di fluidi o immissione di trucioli o polvere

Dimensioni di progetto	Dimensionamento	Fonti di informazione	
1. Corsa normale o corsa	Corsa normale: Corsa > lunghezza chiocciola L;	Indicazione corsa breve, Pagina 133	
breve	1 000 mm > 77 mm! ossia corsa normale appropriata!	L vedi Pagina 34	
2. Prima lubrificazione	Prima lubrificazione:	Vedi lubrificazione iniziale Pagina 162	
	in fabbrica con Dynalub 510		
3. Quantità di rilubrificazione	Quantità di rilubrificazione: 0,06 cm ³	Quantità di rilubrificazione da tabella Pagina 162	
4. Posizione di montaggio	Osservare Indicazione di posizione e procedura per	vedi "Indicazione di posizione e procedura"	
	posizione di montaggio orizzontale!	a pagina 163	
5. Dimensioni del distributore	Dimensioni del distributore a pistone ammesse:	vedi Pagina 163	
a pistone	0,03 cm ³		
6. Numero di impulsi	N 0,06 cm ³	Numero Quantità di rilubrificazione	
	Numero di impulsi = $\frac{0.06 \text{ cm}^3}{0.03 \text{ cm}^3}$ = 2	di impulsi = Dimensioni del distributore a pistone amm.	
7. Rapporto di carico	Rapporto di carico = $\frac{9510 \text{ N}}{38000 \text{ N}} = 0.25$	Rapporto di carico = $\frac{F_m}{C}$	
	38 000 N		
		F _m e C in base alle specifiche	
8. Intervallo di rilubrificazione	Intervallo di rilubrificazione: 0,63 · 10 ⁶ giri	Da diagramma Pagina 164 per rapporto di	
	oppure ogni 6,3 h	carico 0,25	
9. Intervallo di rilubrificazione	Dal momento che per n _m = 1000 min ⁻¹ il raggiungimen-	n _m in base alle specifiche	
attivo	to di $0.63 \cdot 10^6$ giri ha luogo solo dopo 10.5 h, le 6.3 h	Per l'intervallo di rilubrificazione attivo vedi	
	rilevate valgono come intervallo di lubrificazione.	"Nota" Pagina 162	
10. Ciclo di lubrificazione	Ciclo di lubrificazione = $\frac{6.3 \text{ h}}{2}$ = 3,15 h	Ciclo di lubrificazione = Intervallo di rilubrificazione a	
	$\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$	Numero di impulsi	
Risultato intermedio	Per l'asse X occorre alimentare ogni 3,15 h la chiocc	iola della vite a sfere con una quantità minima di	
(asso V)	0.03 cm ³ di Shall Tanna S. 220		

(asse X)

0,03 cm³ di Shell Tonna S 220.

Asse Y

Componente o parametro	Specifiche
Vite a sfere	FEM-E-B 16x16Rx3-3; C = 11 200 N; n° di identificazione: R 1502 060 63 (Pagina 36)
Carico assiale dinamico equivalente	F _m = 1 200 N
Corsa	500 mm
Regime medio di giri	$n_{\rm m} = 1500~{\rm min^{-1}}$
Temperatura ambiente	da 10 a 40 °C
Posizione di montaggio	Orizzontale
Lubrificazione	Impianto di lubrificazione ininterrotta a perdita totale per tutti gli assi con olio Shell Tonna S 220
Alimentazione	Nessuna alimentazione di fluidi o immissione di trucioli o polvere

Dimensioni di progetto	Dimensionamento	Fonti di informazione
1. Corsa normale o corsa breve?	Corsa normale: Corsa > lunghezza chiocciola L;	Indicazione corsa breve Pagina 133,
	500 mm > 61 mm! ossia corsa normale appropriata!	L vedi Pagina 36
2. Prima lubrificazione	Prima lubrificazione:	Vedi lubrificazione iniziale Pagina 162
	in fabbrica con Dynalub 510	
3. Quantità di rilubrificazione	Quantità di rilubrificazione: 0,03 cm³	Quantità di rilubrificazione da tabella Pagina 162
4. Posizione di montaggio	Osservare Indicazione di posizione e procedura	vedi "Indicazione di posizione e procedura" a
	per posizione di montaggio orizzontale!	pagina 163
5. Dimensioni del distributore	Dimensioni del distributore a pistone ammesse:	vedi Pagina 163
a pistone	0,03 cm ³	
6. Numero di impulsi	Numero di impulsi = $\frac{0.03 \text{ cm}^3}{0.03 \text{ cm}^3}$ = 1	Numero _ Quantità di rilubrificazione
	0,03 cm ³	di impulsi Dimensioni del distributore a pistone amm.
7. Rapporto di carico	Rapporto di carico = $\frac{1\ 200\ N}{11\ 200\ N} = 0,11$	Rapporto di carico = $\frac{F_m}{C}$
	11 200 1	F _m e C in base alle specifiche
8. Intervallo di rilubrificazione	Intervallo di rilubrificazione: 1,3 · 10 ⁶ giri oppure	Da diagramma Pagina 164 per rapporto di
	ogni 13 h	carico 0,11
9. Intervallo di rilubrificazione	Dal momento che per n _m = 1 500 min ⁻¹ il	n _m in base alle specifiche
attivo	raggiungimento di 1,3 · 10 ⁶ giri ha luogo solo	Per l'intervallo di rilubrificazione attivo vedi
	dopo 14,4 h, le 13 h rilevate valgono come	"Nota" a Pagina 162
	intervallo di lubrificazione.	
10. Ciclo di lubrificazione	Ciclo di lubrificazione = $\frac{13 \text{ h}}{1}$ = 13 h	Ciclo di lubrificazione = Intervallo di rilubrificazione att.
	1 - 10 11	Numero di impulsi

Risultato intermedio (asse Y)

Per l'asse Y occorre alimentare ogni 13 h la chiocciola della vite a sfere con una quantità minima di 0,03 cm³ Shell Tonna S 220.

Risultato finale (lubrificazione a due assi) Dal momento che in questo esempio entrambi gli assi devono essere alimentati da un impianto di lubrificazione ininterrotta a perdita totale, l'asse X stabilisce con il rispettivo ciclo di lubrificazione più breve (3,15 h) il ciclo complessivo dell'impianto, vale a dire anche l'asse Y viene lubrificato ogni 3,15 h.

Lubrificanti

Lubrificante ad alte prestazioni Dynalub per la tecnica del movimento lineare

(omologato solo per Paesi dell'Unione Europea, non autorizzato al di fuori dall'UE)

Descrizione del prodotto Dynalub 510

Numero di identificazione	
R3416 037 00	1 x 400 g
R3416 035 00	fustino da 25 kg

Dynalub 510 è un grasso ad alte prestazioni saponificato al litio, messo a punto appositamente per la tecnica del movimento lineare, dellaclasse NLGI 2. È caratterizzato da buona impermeabilità e resistenza alla corrosione e può essere impiegato in un campo di temperatura compreso tra -20 °C e +80 °C.

Campo di applicazione

Il grasso omogeneo a fibre corte si presta perfettamente in condizioni ambientali convenzionali per la lubrificazione di elementi lineari:

- per carichi fino a 0,5C_{dyn}
- anche per applicazioni a corsa breve ≥ 1 (mm)

Dati tecnici

Per ulteriori indicazioni vedi "Scheda tecnica Dynalub 510" R320103 198/2023-03

Composizione chimica	Olio minerale, Sapone speciale a	ıl litio complesso
Identificazione	KP2K-20	DIN 51 825
Aspetto	marrone	
Temperature d'impiego	-20 °C fino a +80 °C	
Classe NLGI	2	DIN 51 818
Grado di penetrazione	265 - 295 (1/10 mm)	DIN ISO 2137
Resistenza all'acqua	livello di valutazione ≤ 1-90	DIN 51 807-1
Punto di gocciolamento	> +165 °C	DIN ISO 2176
Viscosità dell'olio di base	90 - 110 mm ² /s a +40 °C	DIN EN 16 896
	9,7 - 11,9 mm ² /s a +100 °C	_
Pressione di scorrimento	≤ 1400 hPa a -20 °C	DIN 51 805-2
Test EMCOR	grado di corrosione 0/0	DIN 51 802
Densità	0,88 - 0,92 g/cm³ a +25 °C	Metodo interno
Corrosione del rame	≤ 1 (24 h/120 °C)	DIN 51 811
Forza di coesione	> 2 000 N	DIN 51 350-4
Durata di magazzinaggio in confezione	3 anni	

Descrizione del prodotto Dynalub 520

Numero di identificazione	Unità per confezione
R3416 043 00	1 x 400 g
R3416 042 00	secchio da 5 kg
R0419 090 01	kit di manutenzione
	5 ml

Dati tecnici

Per ulteriori informazioni vedi "Scheda tecnica Dynalub 520" R320103 199/2023-03 Dynalub 520 è un grasso ad alte prestazioni saponificato al litio, messo a punto appositamente per la tecnica del movimento lineare, della classe 00 NLGI. È caratterizzato da buona impermeabilità e resistenza alla corrosione e può essere impiegato in un campo di temperatura compreso tra -20 °C e +80 °C.

Campo di applicazione

Il grasso omogeneo a fibre corte si presta perfettamente in condizioni ambientali convenzionali per la lubrificazione di elementi lineari in versione miniaturizzata e per l'impiego in impianti di lubrificazione centralizzata.

Composizione chimica	Olio minerale, Sapone speciale	al litio complesso
Identificazione	GP00K-20	DIN 51 825
Aspetto	marrone	
Temperature d'impiego	-20 °C fino a +80 °C	
Classe NLGI	00	DIN 51 818
Grado di penetrazione	400 – 430 (1/10 mm)	DIN ISO 2137
Resistenza all'acqua	livello di valutazione ≤ 1-90	DIN 51 807 -1
Punto di gocciolamento	> +160 °C	DIN ISO 2176
Viscosità dell'olio di base	90 - 110 mm ² /s a +40 °C	DIN EN 16 896
	9,7 - 11,9 mm ² /s a +100 °C	
Pressione di scorrimento	≤ 700 hPa a -20 °C	DIN 51 805 -2
Test EMCOR	grado di corrosione 0/0	DIN 51 802
Densità	0,88 - 0,92 g/cm ³ a +25 °C	Metodo interno
Corrosione del rame	≤ 1 (24 h/120 °C)	DIN 51 811
Forza di coesione	> 1800 N	DIN 51 350 -4
Durata di magazzinaggio in confezione	3 anni	

Calcolo

Su richiesta, calcolo dettagliato in base alle vostre indicazioni.

Vedi "Formulario per servizio di calcolo" a pagina 189

Velocità media e carico medio

Per il calcolo delle durate di vita soggette

a condizioni di funzionamento variabili (regime di giri e carico variabili), vanno

utilizzati i valori medi F_m e n_m.

- A regime di giri variabile, per il regime medio di giri n_m vale

$$n_{m} = \frac{|n_{1}| \cdot q_{t1} + |n_{2}| \cdot q_{t2} + ... + |n_{n}| \cdot q_{tn}}{100\%}$$

$$n_{1}, n_{2}, ... n_{n} = \text{numeri di giri nelle fasi 1 ... n}$$

$$n_{m} = \text{velocità media}$$

$$q_{t1}, q_{t2}, ... q_{tn} = \text{tempo parziale delle fasi 1 ... n}$$

$$(min^{-1})$$

$$(min^{-1})$$

Per il carico del cuscinetto effettivo equivalente vale:

$$\begin{split} |F_n| &> 2,8 \cdot F_{pr} & F_{eff \, n} = \, |F_n| \\ |F_n| &\leq 2,8 \cdot F_{pr} & F_{eff \, n} = \left[\frac{|F_n|}{2,8 \cdot F_{pr}} + 1 \right]^{\frac{3}{2}} \cdot F_{pr} \\ |C| &= fattore \, di \, carico \, dinamico & (N) \\ |F_{eff \, n}| &= carico \, assiale \, effettivo \, equivalente \, durante \, fase \, n & (N) \\ |F_n| &= carico \, assiale \, durante \, fase \, n & (N) \\ |F_{pr}| &= forza \, di \, precarico \, (vedi \, tabelle \, a \, pagina \, 148/151) & (N) \end{split}$$

 Con carico variabile e numero di giri costante vale per il carico assiale dinamico equivalente F_m

$$\begin{split} F_m &= \sqrt[3]{\left|F_{eff \, 1}\right|^3 \cdot \frac{q_{t1}}{100\%}} + \left|F_{eff \, 2}\right|^3 \cdot \frac{q_{t2}}{100\%} + ... + \left|F_{eff \, n}\right|^3 \cdot \frac{q_{tn}}{100\%}} \quad 2 \\ F_{eff \, 1}, F_{eff \, 2}, ... F_{eff \, n} &= \quad \text{carico assiale effettivo equivalente durante le fasi } 1 \, ... \, n \, \, \text{(N)} \\ F_m &= \quad \text{carico assiale dinamico equivalente} \\ q_{t1}, q_{t2}, ... q_{tn} &= \quad \text{tempo parziale per } F_{eff \, 1}, \, ... \, F_{eff \, n} \end{split}$$

– A carico e regime di giri variabili, per il carico assiale dinamico equivalente F_{m} vale

$$\begin{split} F_m &= \sqrt[3]{\left|F_{eff\,1}\right|^3 \cdot \frac{|n_1|}{n_m} \cdot \frac{q_{t1}}{100\%} + \left|F_{eff\,2}\right|^3 \cdot \frac{|n_2|}{n_m} \cdot \frac{q_{t2}}{100\%} + ... + \left|F_{eff\,n}\right|^3 \cdot \frac{|n_n|}{n_m} \cdot \frac{q_{tn}}{100\%}} \ 3} \\ F_{eff\,1}, F_{eff\,2}, \dots F_{eff\,n} &= \text{carico assiale effettivo equivalente durante le fasi } 1 \dots n \qquad (N) \\ F_m &= \text{carico assiale dinamico equivalente} \qquad (N) \\ n_1, n_2, \dots n_n &= \text{numeri di giri nelle fasi } 1 \dots n \qquad (min^{-1}) \\ n_m &= \text{velocità media} \qquad (min^{-1}) \\ q_{t1}, q_{t2}, \dots q_{tn} &= \text{tempo parziale per } F_{eff\,1}, \dots F_{eff\,n} \end{cases} \end{split}$$

Durata di vita nominale

Durata di vita in giri L

$$L = \left[\frac{f_{ac} \cdot C}{F_m}\right]^3 \cdot 10^6 \text{ 4} \Rightarrow C = \frac{F_m}{f_{ac}} \sqrt[3]{\frac{L}{10^6}} \text{ 5} \Rightarrow F_m = \frac{f_{ac} \cdot C}{\sqrt[3]{\frac{L}{10^6}}} \text{ 6}$$

$$C = \text{ fattore di carico dinamico} \qquad (N)$$

$$F_m = \text{ carico assiale dinamico equivalente} \qquad (N)$$

$$L = \text{ durata di vita nominale in giri} \qquad (-)$$

$$f_{ac} = \text{ fattore di correzione classi di tolleranza (vedi pagina 141)}$$

Durata di vita in ore Lh

$$L_h = \frac{L}{n_m \cdot 60}$$
 7
$$L_h = \frac{L}{durata \ di \ vita \ in \ giri}$$
 (h)
$$L = \frac{L}{durata \ di \ vita \ in \ giri}$$
 (-)
$$n_m = \frac{1}{2} \text{ velocità media}$$
 (min⁻¹)

$$L_{h \; macchina} = L_{h} \cdot \frac{ED_{macchina}}{ED_{BASA}} + ED_{macchina} = 0 \\ ED_{BASA} +$$

Coppia motrice e potenza motrice

Verificare la coppia massima ammessa per la lavorazione delle estremità

Coppia motrice Mta

per trasformazione da moto rotatorio in moto rettilineo

Coppia in uscita M_{te}

per trasformazione da moto rettilineo in moto rotatorio:

Potenza motrice Pa

A In caso di applicazioni critiche, osservare quanto segue.

Sicurezza di carico statico So

Per ogni costruzione con contatto volvente occorre verificare il calcolo relativo alla sicurezza di carico statico.

 $F_{0\,max}$ rappresenta l'ampiezza massima di carico in grado di agire sull'azionamento a vite, indipendentemente dal fatto che si tratti o meno di azione temporanea del carico.

Può rappresentare l'ampiezza di punta di uno spettro di carico dinamico.

Per il dimensionamento valgono i dati in tabella.

$$M_{te} = \frac{F_L \cdot P \cdot \eta'}{2\ 000 \cdot \pi} \quad 10$$

$$M_p = \text{coppia motrice massima ammessa} \quad \text{(Nm)}$$

$$M_{te} \leq M_p \quad M_{te} = \text{coppia in uscita} \quad \text{(Nm)}$$

$$P = \text{passo} \quad \text{(mm)}$$

$$\eta' = \text{rendimento} \quad (\eta' \approx 0.8) \quad \text{(-)}$$

Per unità chiocciola precaricate osservare il momento torcente senza carico esterno.

$$P_a = \begin{array}{ccc} M_{ta} \cdot n \\ \hline 9 \ 550 \end{array} \quad \begin{array}{cccc} M_{ta} = & coppia \ motrice \\ n & = & numero \ di \ giri \\ P_a & = & potenza \ motrice \end{array} \quad \begin{array}{cccc} (Nm) \\ (min^{-1}) \\ (kW) \end{array}$$

$$S_0 = C_0 / (F_{0 \text{ max}})$$
 12 $C_0 = \text{fattore di carico statico}$ (N) $C_0 = \text{fattore di carico statico}$ (N) $C_0 = \text{fattore di carico statico}$ (N) $C_0 = \text{fattore di carico statico}$ (O) $C_0 = \text{fattore di carico statico}$ (O)

Dimensionamento del fattore di sicurezza di carico statico in riferimento alle condizioni di impiego

Condizioni di impiego	Fattore di sicurezza di carico statico S ₀
Disposizioni sospese in posizione capovolta e applicazioni potenzialmente molto pericolose	≥ 12
Sollecitazione dinamica elevata da fermo, imbrattamento.	8 - 12
Dimensionamento normale di macchine e impianti, se non si conoscono perfettamente tutti i parametri di carico o le precisioni di connessione.	5 - 8
Sono perfettamente noti tutti i dati di carico. È garantito un funzionamento a prova di vibrazioni.	3 - 5

In caso di pericoli per la sicurezza e la salute di persone prevedere un dispositivo anticaduta (vedi capitolo Chiocciola d'emergenza).

Calcolo

Esempio di calcolo durata di vita

Condizioni di funzionamento

La durata di vita della macchina deve essere di 40 000 ore di esercizio con un tempo d'inserzione della vite a sfere del 60%.

Calcoli

Regime medio di giri n_m

Carico assiale dinamico equivalente Fm con carico e numero di giri variabili

Durata di vita richiesta L (in giri) La durata di vita L può essere calcolata mediante conversione delle formule 7 e 8:

Fattore di carico dinamico C

Risultato e selezione Dalle tabelle dimensionali è possibile

ora selezionare:

Vite a sfere prevista: 63 x 10

 $50\ 000\ N\ con\ n_1 =$ 10 min⁻¹ per $q_1 =$ 6% della durata del ciclo $30 \text{ min}^{-1} \text{ per } q_2 =$ 22% della durata del ciclo $F_2 =$ $25\ 000\ N\ con\ n_2 =$ $8\ 000\ N\ con\ n_3 = 100\ min^{-1}\ per\ q_3 =$ 47% della durata del ciclo $F_3 =$ $2\ 000\ N\ con\ n_4 = 1\ 000\ min^{-1}\ per\ q_4 =$ 25% della durata del ciclo 100%

$$n_{m} = \frac{6}{100} \cdot |10| + \frac{22}{100} \cdot |30| + \frac{47}{100} \cdot |100| + \frac{25}{100} \cdot |1000|$$

$$n_{m} = 304 \text{ min}^{-1}$$

$$\mathsf{F}_{\mathsf{m}} = \sqrt[3]{\left|50000\right|^3\frac{|10|}{304} \cdot \frac{6}{100} + \left|25000\right|^3\frac{|30|}{304} \cdot \frac{22}{100} + \left|8000\right|^3\frac{|100|}{304} \cdot \frac{47}{100} + \left|2000\right|^3\frac{|1000|}{304} \cdot \frac{25}{100}}$$

 $F_{m} = 8757 N$

$$\begin{split} L &= L_h \cdot n_m \cdot 60 \\ \\ L_h &= L_{h \; macchina} \cdot \frac{ED_{BASA}}{ED_{macchina}} \end{split}$$

$$L_h = 40\,000 \cdot \frac{60}{100} = 24000 \text{ h}$$

$$L = 24\ 000 \cdot 304 \cdot 60$$

L = 437 760 000 giri

$$C = \frac{8757}{0.9} \cdot \sqrt[3]{\frac{437760000}{10^6}} \quad 5 \quad C \approx 73880 \text{ N}$$

ad es. vite a sfere, grandezza 63 x 10 R x 6-6, con chiocciola singola flangiata precaricata FEM-E-S, fattore di carico din. C = 106 600 N, numero di identificazione R1512 640 13.

con classe di tolleranza 7 delle viti.

⚠ Osservare il fattore di correzione della classe di tolleranza ac! Vedere pagin 133.

Attenzione:

tener conto del fattore di carico dinamico del cuscinetto di vincolo della vite!

Controllo

Dalle tabelle dei prodotti è possibile ora selezionare:

Grandezza 63 x 10 R x 6-6

Gioco assiale (C0)

Precarico (Classe di precarico C3)

FEM-E-S, con gioco assiale standard Fattore di carico C_{dyn} = 106 560 N Fattore di correzione f_{ac} = 0,9 Controllo

Durata di vita in numero di giri della vite a sfere selezionata

$$L = \left[\frac{0.9 \cdot 106\ 560}{8\ 757} \right]^3 \cdot 10^6$$

 $L \approx 1314 \cdot 10^6$ giri

Durata di vita in ore Lh

$$L_h = \frac{1.314 \cdot 10^6}{304 \cdot 60}$$

 $L_h \approx 72~039$ ore

FEM-E-S, con classe di precarico C3 Fattore di carico C_{dyn} = 106 560 N Fattore di correzione f_{ac} = 0,9 Forza di precarico = 4 400 N Controllo

Per il carico del cuscinetto effettivo equivalente vale:

$$\begin{split} |F_n| &> 2.8 \cdot F_{pr} \quad F_{eff \, n} = |F_n| \\ |F_n| &\leq 2.8 \cdot F_{pr} \quad F_{eff \, n} = \left[\frac{|F_n|}{2.8 \cdot F_{pr}} + 1\right]^{\frac{3}{2}} \cdot F_{pr} \end{split}$$

$$C = fattore di carico dinamico$$
 (N)

$$F_{eff n}$$
 = carico assiale effettivo equivalente durante fase n (N)

$$F_n$$
 = carico assiale durante fase n (N)

 F_{pr} = forza di precarico (vedi tabella a pagina 148/151) (N)

$$2.8 \times F_{pr} = 2.8 \times 4440 \text{ N} = 12432 \text{ N}$$

-
$$F_1$$
 = 50 000 N > 12 432 N \implies F_{eff1} = 50 000 N

- F₃ = 8 000 N < 12 432 N → F_{eff3} =
$$\left[\frac{8\ 000}{12\ 432} + 1\right]^{1.5} \cdot 4440\ N = 9\ 355\ N$$

- F₄ = 2 000 N < 12 432 N → F_{eff4} =
$$\left(\frac{2\ 000}{12\ 432} + 1\right)^{1.5} \cdot 4\ 440\ N = 5\ 553\ N$$

$$F_{m} = \sqrt[3]{\left|50000\right|^{3} \frac{|10|}{304} \cdot \frac{6}{100} + \left|25000\right|^{3} \frac{|30|}{304} \cdot \frac{22}{100} + \left|9355\right|^{3} \cdot \frac{|100|}{304} \cdot \frac{47}{100} + \left|553\right|^{3} \frac{|1000|}{304} \cdot \frac{25}{100}}$$

$$F_{\rm m} = 9485 \, N$$

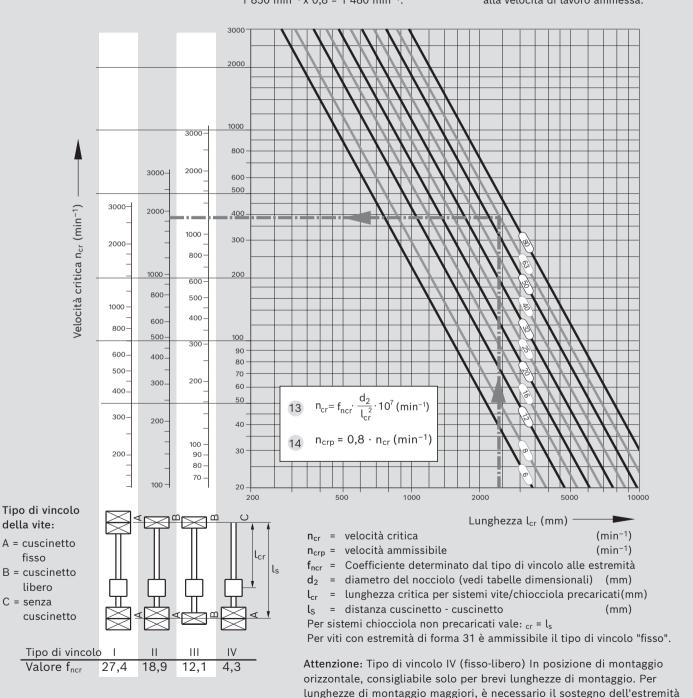
$$L = \left(\frac{0.9 \cdot 106 \, 560}{9 \, 485}\right)^{3} \cdot 10^{6} = 1 \, 034 \cdot 10^{6} \, \text{giri}$$

$$L_h = \frac{1.034 \cdot 10^6}{304 \cdot 60}$$
 = 56 689 ore

La durata di vita di entrambe le chiocciole BASA (con gioco assiale standard C0 / con classe di precarico C3) è superiore alla durata di vita richiesta di 40 000 x 60% = 24 000 ore. È possibile pertanto optare per una chiocciola BASA, a condizione tuttavia di una verifica preliminare.

Velocità critica n_{cr}

La velocità critica n_{cr} dipende dal diametro della vite, dal tipo di vincolo e dalla lunghezza l_{cr}. Non si deve considerare la guida da parte di una chiocciola con gioco assiale. La velocità di lavoro deve essere pari a max. l'80% della velocità critica. Osservare il fattore di velocità o la max. velocità lineare ammessa, vedi "Note tecniche" a pagina 132.


Esempio

Diametro della vite = 63 mm Lunghezza l_{cr} = 2,4 m

Tipo di vincolo II (cuscinetto fisso - libero)

Dalla figura risulta una velocità critica di 1 850 min⁻¹.
La velocità di lavoro ammessa è di 1 850 min⁻¹ x 0,8 = 1 480 min⁻¹.

La velocità di lavoro massima nell'esempio di calcolo di $n_4 = 1~000~\text{min}^{-1}$ risulta pertanto inferiore alla velocità di lavoro ammessa.

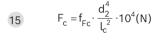
libera. Per ulteriori domande rivolgersi al nostro dipartimento tematico.

Carico assiale ammesso sulla vite F_c (carico sulla vite)

Il carico assiale ammesso sulla vite F_c dipende dal diametro della vite, dal tipo di vincolo e dalla lunghezza non supportata lc.

Per il carico assiale occorre tener conto di un fattore di sicurezza $s \ge 2$.

Esempio


Diametro della vite 63 mm, Passo 10 mm, Lunghezza l_c 2.4 m

Tipo di vincolo IV (cuscinetto fisso - libero)

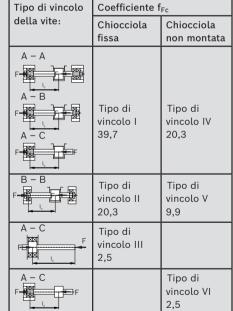
In base alla figura, il carico assiale teorico ammesso è pari a 360 kN.

Con un fattore di sicurezza 2 risulta durante il funzionamento un carico assiale ammesso sulla vite di 360 kN: 2 = 180 kN.

Si aggira pertanto al di sopra del carico di esercizio massimo di F_1 = 50 kN nell'esempio di calcolo.

$$F_{cp} = \frac{F_c}{2}(N)$$

= carico assiale teorico ammesso sulla vite (N)

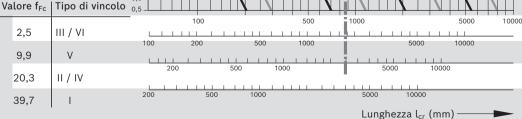

 F_{cp} = carico assiale ammesso sulla vite durante il funzionamento (N)

= coefficiente determinato dal tipo di vincolo alle estremità

= diametro del nocciolo, vedi tabelle dimensionali (mm)

= unghezza filettata non supportata (m

	1000 -	80					igoplus					
Λ	800											
Ť		63					+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$		++-+			+++
	600 -						$\forall \lambda$					
		50						$\overline{}$				
_	400											
\leq	300					$+\lambda+$	++N	\rightarrow				+++
(KN)		40				++	+i $+$ i	+				
te	200				++	+		$\overline{}$				+++
. <u>></u>		32										
alla					$\overline{}$	+	Nil	-1	N			
S	400	25					\square					
iale	100 – 90				+	++			++			
m) sg	80 - 70 -											
, (0 7 9	60 –	20			\rightarrow	\longrightarrow		\longrightarrow	$+\lambda$	acksquare		$\perp \! \! \perp \! \! \perp$
] izi	50 –			$+\lambda$	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	$+\lambda+$		\rightarrow	++++	\longrightarrow		
ြိ	40								+			
		16		 	++	+	\mathbb{H}		++	$\forall N$		+
1	30 –					// / /				\ \		
		12	\times				Ni	$\overline{}$				
	20 -								\perp	$\perp \Lambda$		
	-		+	$++\lambda-$	$+\lambda$	++	+	$+$ λ	++++	++	+	+++
	10 -								\			
	9 -	8			$\overline{}$	\mathbf{N}		$\overline{}$	\mathbb{N}	\mathbf{X}	$\overline{}$	\bigoplus
	8 – 7 –											
	6 -	\longrightarrow		$\perp \setminus$	$\rightarrow \downarrow \downarrow$	+		\perp N	++++	$\perp \lambda \downarrow$	$++\lambda$	$\perp X \perp$
	5 –	\longrightarrow	$\backslash\!\!\!\!\backslash$	++	$+\lambda$	++		$\backslash \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	+	$++\lambda$	+++	+
1	4	6										***
		+	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$			++	\mathbb{A}	$-$ \	$+\lambda$	+	\wedge	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
	3 –	 	+		1	+		$+$ \times	++	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	+	+
1									+	$+$ \wedge \rightarrow $+$ \wedge \rightarrow		
	2 -		+	\square	+	++			$\forall + $	+	++	
								$\overline{}$	\mathbf{N}			\Box
			+	1/11				$\overline{}$	$+$ $\wedge+$	+	\mathbb{N}	\mathbf{H}
1							N:					
	1,0 — 0,9 —					\perp		\perp			\square	$\pm \lambda$
	0,8			1 1		++	$+i\lambda$			// //	\vee	
_	0,7 — 0,6 —											Ш
di vincolo	0,5		ЩШ		$\overline{}$		\Box		\perp		$\perp \setminus \downarrow$	VIII
	-		100	'	' '	500	10	00	'		5000	10000
Ί							ىي				1.1	
	10	00	200	50	0	1000			5000)	10000	
				500	1000					10000		
/		200		500	1000			50	00	10000		
	20		F00	100				5000	1000	^		
	20	JU	500	100	U			5000	1000	U		


Tipo di vincolo della vite:

Tipo di vincolo

A = cuscinetto fisso

B = cuscinetto libero

C = senza cuscinetto

Avvertenze sul carico di punta

La lunghezza efficace del carico di punta l_c è la lunghezza massima della vite non supportata esposta al flusso di forze fra chiocciola e cuscinetto di vincolo assiale (distanza) ovvero fra chiocciola ed estremità della vite.

Con il carico di punta la chiocciola viene considerata come cuscinetto.

Per "chiocciola fissa" devono essere soddisfatti i presupposti seguenti:

- chiocciola senza gioco,
- montaggio rigido della chiocciola nella guida,
- la chiocciola disaccoppiata, vale a dire una guida assume le coppie avviate,
- nessuna contrazione a causa di influssi esterni (ad. es. temperatura).

Con i sistemi lineari di Bosch Rexroth la chiocciola può essere considerata un cuscinetto di vincolo assiale. Se non sono soddisfatte una o più condizioni per "chiocciola fissa", occorre optare per coefficienti per "chiocciola libera".

Il tipo di vincolo III risulta, ad esempio, con la cosiddetta chiocciola rotante se viene movimentata la vite. Qui la chiocciola può essere considerata come bloccata in modo sicuro.

Il tipo di vincolo IV viene applicato soltanto quando la chiocciola non viene supportata da una guida.

Dimensionamento unità di azionamento FAR-B-S

Vantaggi sostanziali di sistemi con chiocciole rotanti

Momento	d'inerzia
Moniento	u illeizia

Con viti lunghe, nella fase di accelerazione non occorre mettere in rotazione la vite, bensì solo la chiocciola. Il momento d'inerzia di massa della vite non è pertanto determinante. Il momento d'inerzia della chiocciola è relativamente piccolo e non dipende più dalla corsa richiesta.

Dinamica

È possibile fare a meno delle complicate progettazioni di cuscinetti di estremità necessari per una dinamica elevata, ad es. a cuscinetto di vincolo assiale su entrambi i lati con cuscinetti a doppia corona di sfere a contatto obliquo.

Stiratura

Dal momento che la vite è ferma, una stiratura della vite è realizzabile con dispendio relativamente ridotto di tempo ed energia:

- aumento del carico assiale ammesso (carico di punta); non limitato dal cuscinetto d'estremità
- compensazione di transizioni di temperatura
- aumento della rigidezza totale

Raffreddamento a liquido

- Una vite forata consente di migliorare facilmente il raffreddamento:
- un raffreddamento della vite fissa può essere infatti realizzato con dispendio relativamente ridotto di tempo ed energia.
- Con un raffreddamento regolato è possibile neutralizzare quasi completamente i mutamenti di lunghezza dovuti a variazioni di temperatura.

Design e tolleranze di produzione

Grazie all'utilizzo di chiocciole con elevata precisione di oscillazione assiale e radiale si riduce a un minimo l'impulso vibrazionale della vite.

Tutti gli elementi funzionali provengono da un unico produttore. Non occorre pertanto l'apporto di applicazioni proprie.

Velocità critica

$$n_{cr} = f_{ncr} \cdot \frac{d_2}{l_{cr}^2} \cdot 10^7 \text{ (min}^{-1}\text{)}$$

$$n_{crp} = 0.8 \cdot n_{cr} (min^{-1})$$

 (min^{-1}) n_{cr} = velocità critica

n_{crp} = velocità di lavoro amm. (min^{-1})

 f_{ncr} = coefficiente determinato

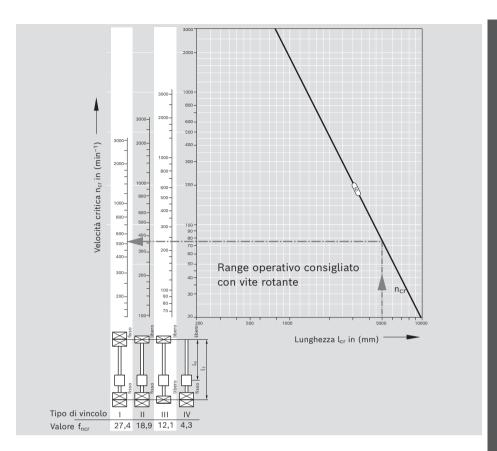
dal tipo di vincolo alle estremità

d₂ = diametro del nocciolo,

vedi tabelle dimensionali (mm) l_{cr} = lunghezza critica per sistemi

chiocciola precaricati (mm)

Velocità critica per vite rotante:

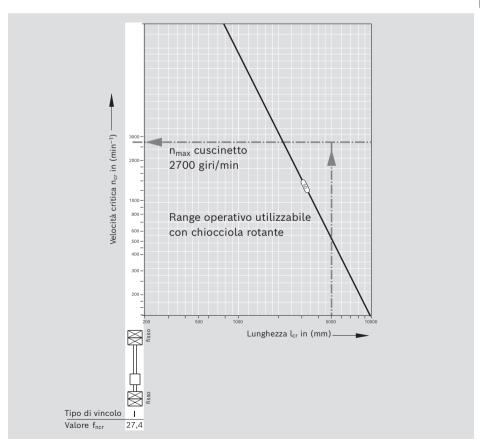

per la vite con azionamento rotante risulta una velocità critica in funzione dei differenti tipi di vincolo:

- I fisso-fisso.
- II fisso-libero,
- III libero-libero,
- IV fisso-libero.

Per sistemi con vite rotante, il numero di giri problematico in curva rappresenta spesso una limitazione per la velocità raggiungibile.

La vite rotante stessa provoca oscillazioni nel sistema, per via della flessione nel montaggio orizzontale o anche di sbilanciamenti della vite. In funzione della lunghezza non vincolante della vite e del numero di giri non si escludono risonanza e ampiezze molto grandi in grado di distruggere il sistema.

Durante la progettazione viene normalmente osservata una distanza di sicurezza del 20% rispetto alla velocità critica.


Velocità critica per chiocciola rotante:

Per sistemi con chiocciola rotante e vite fissa non hanno luogo auto-eccitazioni della vite con costruzione adatta. L'unico impulso residuo a oscillazioni è dovuto alle imprecisioni nella realizzazione della chiocciola rotante o alla struttura della macchina Dal momento che per le unità di azionamento FAR-B-S vengono utilizzate solo chiocciole realizzate con oscillazione assiale e radiale altamente precise, è possibile escludere un influsso negativo sul sistema complessivo. Il numero di giri problematico in curva non rappresenta più pertanto alcuna limitazione.

Fungono da limitazione alla velocità massima solo il numero di giri massimo dei cuscinetti utilizzati e, più raramente, il numero di giri massimo ammesso (valore $d_0 \times n$) della chiocciola utilizzata.

Nota:

Vale solo per cuscinetto fisso-fisso

Dimensionamento unità di azionamento FAR-B-S

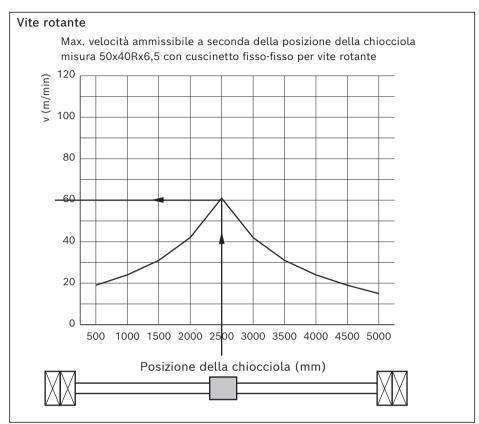
Velocità ammessa in funzione della posizione della chiocciola

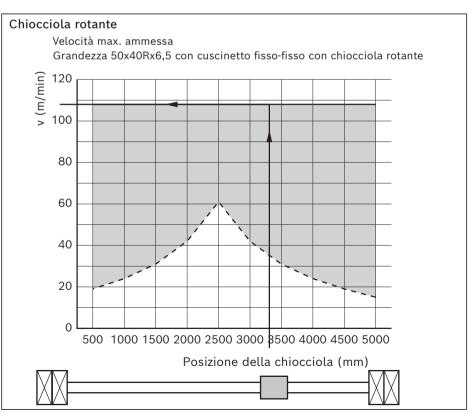
Velocità ammessa con chiocciola rotante Tipo di vincolo I cuscinetto fisso-fisso Tipo di vincolo II cuscinetto fisso-libero

Parametri:

- lunghezza della vite
- diametro della vite
- passo
- tipo di vincolo
- forza di stiramento, trascurabile
- numero di giri max. del cuscinetto
- valore d x n della chiocciola

I diagrammi qui accanto spiegano in modo evidente il vantaggio della chiocciola rotante rispetto a una "vite a sfere di tipo classico" con vite rotante sull'esempio della grandezza 50 x 40R x 6,5.


Per la vite rotante (diagramma in alto) la velocità massima ammessa con una posizione favorevole della chiocciola al centro della vite è di ca. 60 m/min. Questa velocità viene tuttavia raggiunta solo in una posizione della corsa. Con una posizione della chiocciola non al centro vengono raggiunti solo ca. 20 m/min, dal momento che manca il supporto necessario della vite. All'atto pratico non è pertanto possibile sfruttare il potenziale di un fattore di velocità elevato della chiocciola (valore d x n) .


Chiocciola rotante

Per la chiocciola rotante (diagramma in basso; tipo di vincolo I "fisso-fisso") la velocità ammessa dell'unità di azionamento è di v = 108 m/min, per tutta la corsa e indipendentemente dalla posizione della chiocciola.

Per il tipo di vincolo II "fisso-libero" la vincolatura libera assialmente (possibile spostamento assiale) può essere realizzata al fine di ottenere un andamento tangenziale della linea di piegatura (angolo di piegatura sulla posizione cuscinetto = 0). Tale posizione di cuscinetto di vincolo radiale può essere quindi considerata, a fini di calcolo, anche come cuscinetto di vincolo assiale.

- Guadagno in termini di performance con chiocciola rotante
- - vite rotante

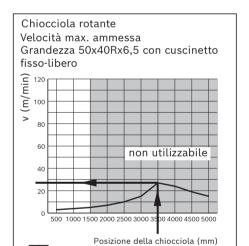
Per i numeri di giri ammessi e le velocità delle unità di azionamento FAR-B-S è possibile consultare la tabella seguente:

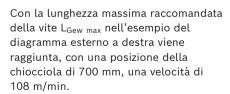
Tipo di vincolo I cuscinetto fissofisso e tipo di vincolo II cuscinetto fisso-libero

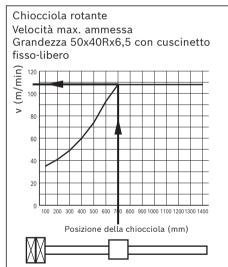
Numero di giri n _{Max}	Velocità v _{maxFAR}
(min ⁻¹)	(m/min)
3 000	30
3 000	60
3 000	96
2 800	28
2 800	56
2 800	112
2 700	27
2 700	54
2 700	108
2 300	23
2 300	46
2 300	92
	3 000 3 000 2 800 2 800 2 800 2 700 2 700 2 700 2 700 2 300 2 300

Conversione del numero di giri in velocità

$$v_{max} = \frac{n_{max} \cdot P}{1000}$$

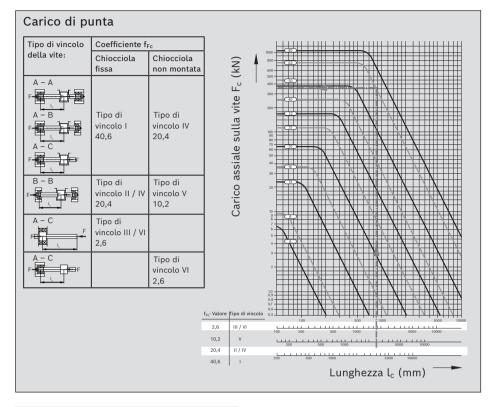

 v_{max} = velocità (m/min) P = passo (mm) n_{max} = numero di giri (giri/min)


Tipo di vincolo III cuscinetto libero-libero


Questo tipo di vincolo non trova praticamente applicazione.

Velocità critica per chiocciola rotante e fissaggio della vite

Tipo di vincolo IV cuscinetto fisso-libero Per sistemi con chiocciola rotante nell'eventualità "fisso-libero" la vite può essere dimensionata solo per corse brevi. Come esempio estremo, la massa netta della vite di lunghezza pari a 50 x 40 mit 5.000 mm comporterebbe con montaggio orizzontale un insellamento statico estremo di ca. 180 mm. Con accorgimenti costruttivi occorre inoltre evitare in modo sicuro anche flessioni sostanzialmente minori e le forze risultanti sulla chiocciola. In questo caso è possibile considerare anche per FAR-B-S la velocità critica come limite nell'eventualità di una posizione sfavorevole della chiocciola sul serraggio, (vedi diagramma al centro a destra). Il valore rilevato ammonta teoricamente a massimo 28 m/min e non è tuttavia utilizzabile per via della flessione. Deve essere quindi introdotta per la prassi una limitazione della lunghezza della vite.


Grandezza BASA	Lunghezza massima raccomandata (mm)	
		$L_{Gew\ max}$
32		1 000
40		1 200
50		1 400
63		1 600

Dimensionamento unità di azionamento FAR-B-S

Coppie ammesse in funzione della posizione della chiocciola

La coppia motrice ammessa per la chiocciola rotante viene limitata dai fattori di incidenza seguenti

- lunghezza della vite
- diametro della vite
- tipo di vincolo
- forza di stiramento
- geometria dell'estremità della vite
- direzione del carico; nel peggiore dei casi una forza di compressione sulla sezione più lunga della vite (carico di punta)

Viene tenuto conto della lunghezza e del diametro della vite, nonché del tipo di vincolo dal carico critico euleriano. Da qui risulta il carico assiale ammesso sulla vite (vedi diagramma in alto). Nella pratica occorre fare i conti con le formule qui accanto.

Per vite stirata vale:

La coppia motrice necessaria per il carico di lavoro risulta dalla formula seguente:

$$F_{c} = f_{Fc} \frac{d_2 4}{l_k^2} \cdot 10^4 \text{ (N)}$$

$$F_{cp} = \frac{F_k}{2} \text{ (N)}$$

$$F_{L} \leq F_{cp}$$

$$F_{cp} = \frac{F_c}{2} + F_{st}$$

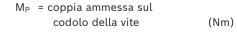
$$F_c$$
 = carico assiale teorico
ammesso sulla vite (N)

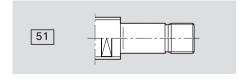
$$F_{cp}$$
 = carico assiale ammesso sulla vite durante il funzionamento (N)

$$F_L$$
 = carico di lavoro del cliente (N)

F_{st} = forza di stiramento della vite (N) zionamento può provocare un calo della

Un aumento della temperatura durante il funzionamento può provocare un calo della forza di stiramento. Occorre tenere conto di questo influsso durante il calcolo di F_{kzul} .

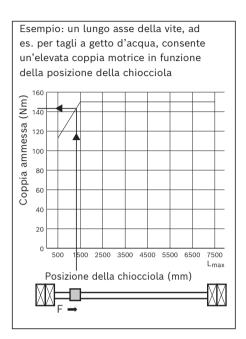

$$\mathsf{M}_{\text{ta}} = \frac{F_L \cdot P}{2\ 000 \cdot \pi \cdot \eta}$$

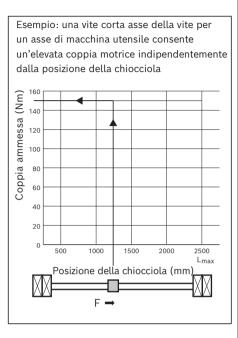

Per unità chiocciola precaricate osservare il momento torcente senza carico esterno.

$$M_{ta}$$
 = coppia motrice sulla chiocciola (Nm)
 F = carico di lavoro (N)
 P = passo (mm)

 η = rendimento (ca. 0,9)

 $M_{ta} \leq M_P$

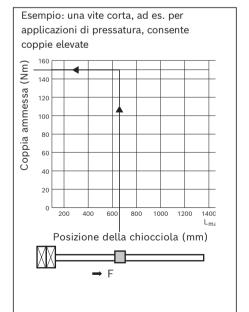



M _{Spzul} (Nm)
< 40
< 150
< 180
< 190

Tipici casi di applicazione

Tipo di vincolo I fisso-fisso: Parametri:

- lunghezza della vite; due casi
- diametro della vite
- tipo di vincolo, qui fisso-fisso
- forza di stiramento, non considerata (vedi pagina seguente)
- geometria dell'estremità della vite forma 51 su entrambi i lati
- direzione del carico, nel peggiore dei casi una forza di compressione sulla sezione più lunga della vite


Tipo di vincolo II fisso-libero:

stiratura non consentita

Tipo di vincolo III libero-libero

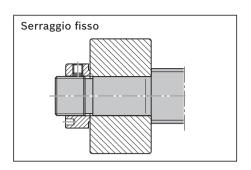
Tipo di vincolo IV fisso-libero Parametri:

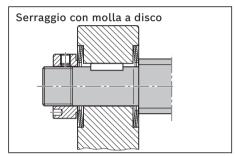
- lunghezza della vite
- diametro della vite
- tipo di vincolo, qui fisso-libero
- forza di stiramento, senza
- geometria dell'estremità della vite forma 51 su un lato
- carico di compressione in direzione del cuscinetto fisso

Questo tipo di vincolo non trova praticamente applicazione.

Dimensionamento unità di azionamento FAR-B-S

Stiratura di viti


Punti fondamentali


Per sfruttare fino in fondo la prestazione di un sistema con chiocciola rotante, si consiglia il tipo di vincolo con serraggio fisso (fisso-fisso) su entrambi i lati della vite.

La stiratura della vite ha il seguente effetto positivo sul sistema complessivo:

 Compensazione di influssi di temperatura al fine di evitare carichi di compressione nella vite e conseguente riduzione del pericolo del carico di punta La variazione di lunghezza e la tensione di trazione provocate dalla stiratura nella vite devono essere contenute entro un campo accettabile per l'intero sistema, altrimenti potrebbero verificarsi, in seguito a deformazione elastica, alterazioni di passo non ammesse tra chiocciola e vite, che inciderebbero negativamente sulla durata di vita.

Con raffreddamento a convenzione della vite è possibile approntare mediante la stiratura una differenza di temperatura di max. ca. 10 °C. Con viti lunghe assemblate è opportuna una stabilizzazione della temperatura di 5 °C. In caso di differenze maggiori di temperatura è necessario un raffreddamento ad acqua della vite.

Dilatazione lineare

Calcolo della dilatazione lineare di una vite durante il funzionamento in caso di aumento della temperatura.

$$\Delta L = L_{thr} \cdot \alpha_{L} \cdot (\vartheta_{s} - \vartheta_{r})$$

con $\alpha_L = 0,0000115$

$$\Delta L$$
 = dilatazione lineare (mm)

$$\alpha_L$$
 = coefficiente di dilatazione lineare (1/K)

$$\vartheta_s$$
 = temperatura della vite

$$\vartheta_r$$
 = temperatura ambiente (K)

Forza di stiramento

Calcolo della forza di stiramento necessaria per la compensazione della dilatazione lineare.

$$F_{st} = \frac{\Delta L \cdot E \cdot \frac{\pi}{4} \cdot d_{ap}^2}{L_{thr}}$$

$$d_{ap} = \frac{d_0 + d_2}{2}$$

$$F_{st}$$
 = forza di stiramento (N)

$$d_{ap}$$
 = diametro di approssimazione (mm)
E = modulo di elasticità (N/mm²)

$$d_0$$
 = diametro nominale (mm)

Tensione di compressione

La tensione di compressione risultante dal serraggio fisso su entrambi i lati nella vite per via della differenza di temperatura viene calcolata come riportato qui a lato.

$$\sigma_{c} = E \cdot (\vartheta_{s} - \vartheta_{r}) \cdot \alpha_{L}$$

con E = $210\ 000\ N/mm^2$

 σ_c = tensione di compressione per via dell'aumento della temperatura (N/mm²)

Tensione di trazione

Per il funzionamento, la tensione di trazione nella vite dovuta alla stiratura deve essere maggiore della tensione di compressione dovuta alla temperatura. Al contempo, non deve essere oltrepassata la tensione di trazione ammessa.

Tensione di trazione nella vite dovuta alla stiratura

$$\sigma_t = \frac{F_{st}}{\frac{\pi}{4} \cdot d_{ap}^2}$$

= tensione di trazione (N/mm²)

$$\sigma_{t}$$
 < σ_{p}

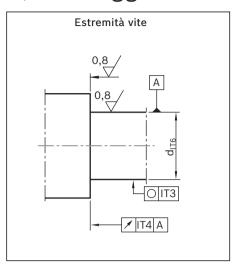
 $La \ tensione \ massimo \ ammessa$ $\sigma_p = 70 \ N/mm^2$

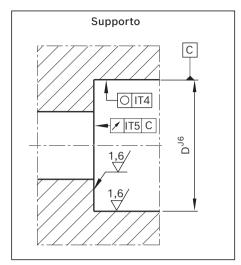
Variazione di lunghezza ammessa

In seguito a stiratura ha luogo una variazione di lunghezza della vite, comportante, a sua volta, una modifica della geometria della vite e della pista. Essa deve essere verificata, al fine di evitare effetti negativi sulla durata di vita della vite a sfere.

$$\Delta L_{zul} = L_{thr} \cdot 0,0001$$

$$\Delta L_{zul}$$
 = dilatazione lineare amm. (mm)
 L_{thr} = lunghezza filettata (mm)


$$\Delta L \leq \Delta L_{zul}$$


Indicazioni costruttive, montaggio

Configurazione del cuscinetto

In caso di lavorazione in proprio osservare le indicazioni costruttive per estremità vite e supporto.

Per la realizzazione di estremità viti di Rexroth vedi paragrafo "Estremità viti". Rexroth fornisce sistemi di azionamento completi comprendenti anche cuscinetti di vincolo. Il calcolo ha luogo in base alle formule conosciute dei produttori di cuscinetti volventi.

Montaggio

Cuscinetti di vincolo assiale a doppia corona di sfere a contatto obliquo e radiali rigidi a sfere

Durante il montaggio dei cuscinetti le forze assiali possono essere esercitate solo sul cuscinetto ad anello da installare. Le forze di spinta per il montaggio non devono mai gravare sui corpi volventi o sulle guarnizioni anulari! Per i cuscinetti assiali a sfere a contatto obliquo LGF e LGN i due semianelli che compongono l'anello interno non devono essere separati durante il montaggio e lo smontaggio!

Le viti di fissaggio di cuscinetti avvitabili o flangiabili devono essere serrate in sequenza incrociata. La coppia di serraggio esercitata su dette viti non deve oltrepassare il 70% del rispettivo limite di snervamento.

Per agevolarne lo smontaggio, i cuscinetti avvitabili (LGF), presentano sulla parte esterna dell'anello esterno una scanalatura circonferenziale per l'estrazione. I singoli cuscinetti di una coppia di cuscinetti delle serie LGF-C... E LGN-C... sono contrassegnati sulla parte esterna degli anelli esterni, vedi figura. Il contrassegno indica la disposizione dei cuscinetti. Con disposizione corretta, le guarnizioni anulari sono rivolte all'esterno.

Ghiera a tacche NMA, NMZ

Il serraggio delle ghiere a tacche comporta il precarico dei cuscinetti.

Per impedire eventuali manifestazioni di cedimento, serrare la ghiera a tacche con una coppia di serraggio pari al doppio del valore di M_A e quindi riallentare. Procedere quindi nuovamente con la coppia di serraggio M_A indicata.

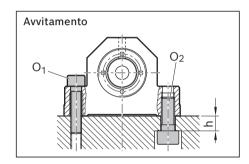
Serrare infine i grani filettati, alternatamente, con una chiave a brugola.

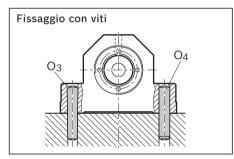
Per lo smontaggio, allentare per primi i grani filettati e quindi la ghiera a tacche.

Il montaggio e smontaggio a regola d'arte consentono di utilizzare più volte le ghiere a tacche. Gli anelli interni dei cuscinetti sono realizzati su misura in modo da ottenere, al momento di serrare la ghiera a tacche (M_A come da tabella dimensionale) un precarico definito dei cuscinetti, sufficiente per la maggior parte delle applicazioni.

Avvertenza costruttiva

Per contrastare la coppia di serraggio MA della ghiera a tacche consigliamo di prevedere una superficie della chiave sul mandrino, oppure un foro esagonale sul lato frontale.


Fissaggio supporto


Fissaggio supporti SEB

Serrare le viti di fissaggio dell'unità supporto in sequenza incrociata. Per le coppie di serraggio massime vedi tabella. L'anello filettato blocca il cuscinetto completo nel supporto. Per il montaggio dell'anello filettato ricorrere a un fermo a vite.

Allineare la vite con chiocciola, i cuscinetti e la guida correttamente a filo. Come mezzo ausiliario si presta la sonda di Rexroth.

Grandezza	h	O ₁	O ₂	O ₃ , spina conica (temprata)
d ₀ xP	(mm)	DIN 912	DIN 912	O ₄ , spina cilindrica (DIN 6325)
6x1/2	8	M5x20	M6x16	4x20
8x1/2/2,5/5	8	M5x20	M6x16	4x20
12x2/5/10	8	M5x20	M6x16	4x20
16x5/10/16	11	M8x35	M10x25	8x40
20x5/10/20/40	11	M8x35	M10x25	8x40
25x5/10/25	14	M10x40	M12x30	10x50
32x5/10/20/32/64	14	M10x40	M12x30	10x50
40x5/10/12/16/20/25/30/40	16	M12x50	M14x35	10x50
50x5/10/12/16/20/25/30/40	16	M12x55	M14x35	10x60
63x10/20/40	16	M12x65	M14x35	10x70
80x10/20/40	22	M16x70	M20x50	12x80

Coppie di serraggio per viti di fissaggio secondo VDI 2230 per μ_G = μ_K = 0,125 (coefficiente di attrito)

Accoppiamento del materiale acciaio/acciaio

(1)	classe di resistenza per O ₁ ; O ₂	M5	M6	M8	M10	M12	M14	M20
(2)	8.8	5,5	9,5	23	46	80	125	390
(Nm)	12.9	9,5	16,0	39	77	135	215	650

Accoppiamento del materiale acciaio/alluminio e alluminio/alluminio

	classe di resistenza per O ₁ ; O ₂	M5	M6	M8	M10	M12	M14	M20
	8.8	4,8	8,5	20	41	70	110	345
(Nm)	12.9	4,8	8,5	20	41	70	110	345

Viti di fissaggio

A Se soggette a sollecitazioni elevate, controllare sempre la sicurezza costruttiva delle viti!

Lubrificazione dei cuscinetti di vincolo

I cuscinetti per viti a sfere sono in genere alimentati con lubrificazione a grasso per la sicurezza di funzionamento. Ciò non si applica ai nostri cuscinetti LGS, sono senza guarnizione e pertanto non lubrificati. Tenere conto che con una lubrificazione a grasso non si verifica dissipazione di calore dal cuscinetto. La temperatura di stoccaggio non dovrebbe superare i 50 °C per le macchine utensili. Con temperature più elevate provvedere a una lubrificazione a circolazione d'olio. I cuscinetti di vincolo assiale a doppia corona di sfere a contatto obliquo delle serie LGF, LGN vengono lubrificati a vita con grasso KE2P-35 secondo DIN 51825. Per una rilubrificazione mediante i raccordi di lubrificazione presenti, possono essere considerate le quantità indicate in tabella. Con coppie di cuscinetti tener presente che ogni cuscinetto deve essere lubrificato singolarmente mediante il raccordo di lubrificazione. Ogni cuscinetto va lubrificato con la metà del valore riportato in tabella. Come intervallo massimo sono ammissibili 350 milioni di giri (con conseguente maggiore quantità). Normalmente è sufficiente l'ingrassaggio iniziale per la durata di utilizzo di una vite a sfere.

Quantità di ri	lubrificazione	per i cuscinetti di vincolo assiale a doppia corona di sfere a contatto obliquo LGF. LGN										
Sigla		Quantità	(cm ³)	Sigla		Quantità (cm³) Sigla				Quantità (cm3)		
			1)		2)		1)				1)	
LGN-B-0624		0,33	0,22									
LGN-B-1034		0,33	0,22									
LGN-B-1242	LGF-B-1255	0,43	0,33									
LGN-B-1747	LGF-B-1762	0,54	0,43									
LGN-B-2052	LGF-B-2068	0,87	0,54									
				LGN-C-2557	LGF-C-2575	2,17	1,3					
LGN-B-3062	LGF-B-3080	1,09	0,65	LGN-C-3062	LGF-C-3080	2,17	1,3					
LGN-B-3572	LGF-B-3590	1,74	0,98									
								LGN-A-4090	LGF-B-40115	6,52	3,80	
								LGN-A-50110	LGF-A-50140	9,78	5,98	

¹⁾ Intervallo di lubrificazione ridotto di max. 10 milioni di giri

I cuscinetti di vincolo assiale a doppia corona di sfere a contatto obliquo della serie LGS sono senza guarnizione, pertanto non sono lubrificati. Per la quantità di lubrificante necessaria per l'iniziale prima lubrificazione fare riferimento alla tabella sotto riportata:

Quantità di lubrificazione iniziali per cuscinetti di vi Sigla	ncolo assiale a doppia corona di sfere a contatto obliquo LGS Quantità (cm³)
LGS-E-1030	1,09
LGS-E-1232	2,17
LGS-E-2047 LGS-E-1747	3,26
LGS-E-3072	7,61
LGS-E-3580	8,70
LGS-E-4090	10,87
LGS-E-50110	16,30
LGS-E-60130	21,74

²⁾ Per coppie di cuscinetti lubrificare singolarmente ogni cuscinetto mediante raccordo di lubrificazione. Lubrificare ogni cuscinetto con la metà del valore riportato in tabella.

Calcolo

Carico risultante ed equivalente del cuscinetto

Per cuscinetti di vincolo assiale a doppia corona di sfere a contatto obliquo LGN e LGF

I cuscinetti di vincolo assiale a doppia corona di sfere a contatto obliquo sono precaricati. Il diagramma mostra il carico assiale risultante del cuscinetto F_{ax} in funzione del precarico e del carico di lavoro assiale F_{Lax} .

Con carico puramente assiale comb è = F_{ax} .

α = 60°	X	Υ
$\frac{F_{ax}}{F_{rad}} \le 2,17$	1,90	0,55
$\frac{F_{ax}}{F_{rad}} > 2,17$	0,92	1,00

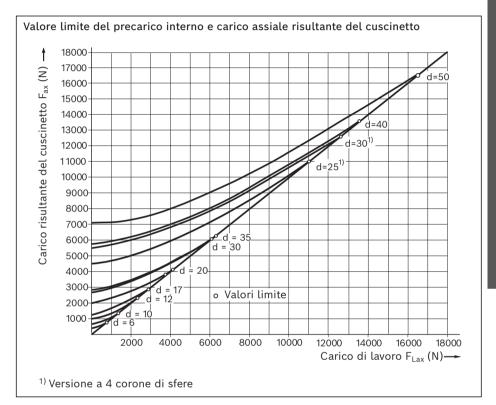
 α = angolo di contatto

 F_{ax} = carico assiale risultante

del cuscinetto

F_{Lax} = carico di lavoro

X, Y = fattore adimensionale


Quando le forze radiali non sono trascurabili, i carichi equivalenti si calcolano secondo la formula 20. I cuscinetti per unità viti a sfere sono anche in grado di assorbire coppie massime. In linea di massima, i carichi della coppia derivanti dalla massa della vite e dall'azionamento possono essere trascuratiin generale per il calcolo del carico equivalente del cuscinetto.

Carico statico assiale ammesso per serie di cuscinetti LGF

Per cuscinetti della serie LGF il carico assiale statico ammesso nel senso di avvitamento è:

$$F_{comb} = X \cdot F_{rad} + Y \cdot F_{ax}$$
 20

$$F_{rad}$$
 = carico radiale (N)

$$F_{0ax p} \leq \frac{C_0}{2}$$

$$F_{0ax p}$$
 = carico statico assiale
ammesso del cuscinetto (N)

Il fattore di carico assiale statico C_0 è indicato nelle tabelle dimensionali

À È obbligatoria una progettazione tecnica a parte per il rilevamento dei valori limite per tutti gli accessori (ad es. unità supporto cuscinetti di vincolo, gruppo cuscinetti di vincolo, etc.).

Calcolo

Carico risultante ed equivalente del cuscinetto

Per cuscinetto di vincolo assiale a doppia corona di sfere a contatto obliquo LGL

Prima di determinare il carico combinato equivalente F_{comb} occorre verificare la grandezza del cuscinetto con il diagramma per il carico limite statico. Perché un cuscinetto sia adatto all'applicazione, il punto d'intersezione di carico assiale e radiale deve risultare sotto la linea limite.

$F_{comb} = X$	$\cdot F_{rad}^A + Y \cdot$	$F_{ax}^{B} + Z$	21
----------------	-----------------------------	------------------	----

Grandezza			-	Α	В
		0,1300		1,90	1,40
		0,0460	1	1,28	1,30
LGL-A-1547	0,022	0,0110	540	1,45	1,50
LGL-A-2060	0,017	0,0082	960	1,45	1,50

= carico assiale del cuscinetto (N) F_{comb} = carico combinato equivalente (N) = carico radiale (N) X, Y, Z = fattori di calcolo(-)A, B = esponenti (-)

(N)

Carico limite statico	7000
	6500
	6000
	Ž 5500
	© 5000 L 4500
	₩ 4500
	9 4500 Pg 3500
	® 3500
	8 3000
	ē ²⁵⁰⁰
	1500
—— LGL-D-0624	1000
LGL-A-1244	500
LGL-A-1547	0 400 800 1200 1600 2000 2400 2800
LGL-A-2060	Carico assiale del cuscinetto F _{ax} (N)

Velocità media e carico medio del cuscinetto

Con carico del cuscinetto gradualmente variabile lungo un lasso di tempo determinato, 22 calcolare il carico dinamicoequivalente del cuscinetto con l'equazione.

Per numero di giri variabile ricorrere alla formula 23, dove qt rappresenta le quote attuali della durata in esercizio in %.

$$F_m = \sqrt[3]{F_{comb1}}^3 \cdot \frac{|n_1|}{n_m} \cdot \frac{q_{t1}}{100} + F_{comb2}^3 \cdot \frac{|n_2|}{n_m} \cdot \frac{q_{t2}}{100} + \dots + F_{combn}^3 \cdot \frac{|n_n|}{n_m} \cdot \frac{q_{tn}}{100}$$

$$n_m = \frac{q_1}{100} \cdot n_1 + \frac{q_2}{100} \cdot n_2 + ... + \frac{q_n}{100} \cdot n_n$$
 23

 $F_{comb1} \dots F_{combn}$ = carico assiale combinato equivalente nelle fasi 1 ... n

= carico assiale dinamico equivalente (N)

= numeri di giri nelle fasi 1 ... n (min^{-1})

 velocità media (min^{-1}) n_{m}

= tempo parziale nelle fasi 1 ... n (%) q_{t1} ... q_{tn}

Durata di vita e sicurezza di carico

Durata di vita nominale

La durata di vita nominale viene calcolata come segue:

Attenzione:

osservare il fattore di carico dinamico della chiocciola!

Sicurezza di carico statico

Per macchine utensili, la sicurezza di carico statico non dovrebbe risultare inferiore a 4.

$$L = \left(\begin{array}{c} C \\ \hline F_m \end{array} \right)^3 \cdot 10^6 \qquad 24 \quad \begin{array}{c} C \\ \hline F_m \end{array} = \begin{array}{c} \text{fattore di carico dinamico del cuscinetto} \qquad \text{(N)} \\ \hline E_m \\ \hline E_m \\ \hline E_m \end{array} = \begin{array}{c} \text{carico combinato equivalente} \\ \hline E_m \\ \hline E_m \\ \hline E_m \end{array} = \begin{array}{c} \text{durata di vita nominale in ore di esercizio} \\ \hline E_m \\ E_m \\ \hline E_m \\ \hline E_m \\ \hline E_m \\ \hline E_m \\ E_m \\ \hline E_m \\ E_m \\ \hline E_m \\ E_m \\ \hline E_m \\ E_m \\ \hline E_m \\ E_m \\ \hline E_m \\ E_m \\ \hline E_m \\$$

$$S_0 = \frac{C_0}{F_{0max}} \ \ \, \begin{array}{rcl} F_{0max} = & carico \ \, statico \ \, massimo & (N) \\ C_0 = & fattore \ \, di \ \, carico \ \, statico \\ S_0 = & fattore \ \, di \ \, sicurezza \ \, di \ \, carico \ \, statico \\ (-) \end{array}$$

Bosch Rexroth								Soc	ietà:							
Linear Motion T	echnology							Cont	atto:							
97419 Schweinfurt / Germania Telefono:																
Troverete il vost	ro referente loc	cale all'indirizzo	www.b	oschre:	xroth.co	m/con	tact									
Applicazione																
	Nuovo progetto) N	lodifica	proget	tto											
Condizioni di fu	ınzionamento															
Dati rela	tivi ai tempi pa	arziali d)				С	ati rela	ativi al	ciclo	dinam	ico				
Tempi parziali (%)	Numero di giri (1/min)	i Forza x agisce	Paragr	afo	T1	T2	Т3	T4	T5	Т6	T7	Т8	Т9	T10	T11	T12
T ₁ =	n ₁ =		Corsa													
T ₂ =	n ₂ =		V	(m/s)												
T ₃ =	n ₃ =		а	(m/s ²)											
T ₄ =	n ₄ =		Ora	(s)												
T ₅ =	n ₅ =		Forza :	z agisc	е											
T ₆ =	n ₆ =						-				1					
Forze	(N) =	1	F2			F3			F4			F5			F6	
	m	11	m2			m3			m4			m5			m6	
Massa (kg) =					-										
Interasse supp	orto (mm) =					0			Cor	sa ma	ıssima	(mı	m) =			
Tipo di cuscine	etto															
1. 🗆 Fisso			L _s	I						Fiss	so		ontale	li mont	aggio	
2. 🗆 Fisso			L _s						ll disegno è all Libero (consigliabile)					ato [
3. 🗆 Fisso			L _s							Lib	ero	Forni	tura co	on cus	cinetti	
Durata di vita r	ichiesta:							Te	mpera	ntura d	di esero	cizio:	°C	fino a		°C
Tipo di lubrific	azione:															
Breve descrizio	ne dell'applica	azione/condizion	i di ese	rcizio	eccezior	nali:										

Viti a rulli planetari PLSA

Indice viti a rulli planetari

Indice	193
Presentazione dei prodotti	193
Chiocciole, viti, lavorazione delle estremità, cuscinetti	194
Definizione di vite a rulli planetari	195
Esempi applicativi	196
Richiesta d'offerta e ordinazione	198
Panoramica versioni / Abbreviazioni	199
Chiocciole	200
Chiocciola singola cilindrica ZEM-E-S	200
Chiocciola singola flangiata FEM-E-S	202
Viti	204
Vite di precisione PSR	204
Estremità viti	206
Abbreviazioni	207
Forma 002	207
Forma 112, 122	208
Forma 132, 142	210
Forma 212, 222	212
Forma 312	214
Forma 412	216
Forma 512, 522	218
Forma 532, 542	220
Forma 612, 622	222
Forma 712, 722	224
Forma 812, 822	226
Forma 832, 842	228
Forma 912, 922	230
Forma 932, 942	232
Accessori	234
Panoramica	234
Gruppo cuscinetti di vincolo LAF	236
Gruppo cuscinetti di vincolo LAN	238
Gruppo cuscinetti di vincolo LAD	240
Gruppo cuscinetti di vincolo LAS	242
Gruppo cuscinetti di vincolo FEC-F	244
Ghiere a tacche NMA, per vincolatura assiale	246
Anello filettato GWR Pattini di misura	247
ratum ut misura	248

Dati tecnici	250
Note tecniche	250
Condizioni di collaudo e classi di tolleranza	253
Precarico, rigidezza, momenti d'attrito	256
Montaggio	258
Tolleranze di montaggio	260
Lubrificazione	261
Calcolo	266
Cuscinetti di vincolo	272
Lubrificazione dei cuscinetti di vincolo	273
Cuscinetti di vincolo	274
Formulario per servizio di calcolo	275
Informazioni approfondite	278

Chiocciole, viti, lavorazione delle estremità, cuscinetti

Chiocciole	Pagina
Chiocciola singola cilindrica	200
omocolota singota citinarica	200
ZEM-E-S	
Classe di precarico: C0, C2	
Chiocciola singola flangiata	202
5 5	
FEM-E-S	
Classe di precarico: C0, C2	
Viti	
Vite di precisione PSR	204
Classi di tolleranza	
T5, T7, T9	
Condizioni di collaudo	253
Estremità viti	
	206
Cuscinetti	
	226
LAF	236
LAF	236
LAF	236
LAN	236
LAN	238
LAN	238
LAN	238
LAD	238
LAN	238
LAD	240
LAD	240
LAD LAS FEC-F	240
LAD LAS FEC-F Accessori	240
LAN LAD LAS FEC-F Accessori Ghiera a tacche NMA	240 242 244 246
LAD LAS FEC-F Accessori	240

Diametro d ₀ (mm)	Passo P		
	(mm)		
	5	10	20
20	Χ	_	_
25	X	X	_
30	Χ	X	_
39	Χ	X	_
48	Χ	X	X
60	-	X	Х
75	-	X	X

Definizione di vite a rulli planetari

La vite a rulli planetari PLSA è nel suo complesso un cinematismo di tipo planetario ad attrito volvente, dove i rulli sono i corpi volventi. Essa serve a trasformare il moto rotatorio in moto rettilineo o viceversa.

In sé, il principio di funzionamento di una vite a rulli planetari è semplice da definire, ma nella prassi sono molteplici le caratteristiche tecniche da prevedere per soddisfare le esigenze applicative.

Le viti a rulli planetari sono concepite per la trasmissione di forze elevate e pertanto completano la gamma degli azionamenti a vite "verso l'alto".

Nelle viti a rulli planetari i corpi volventi sono dei rulli filettati (satelliti) le cui estremità sono alloggiate in due corone circolari forate. Il loro asse di rotazione è parallelo all'asse della vite centrale. La vite ruotando genera il moto rettilineo della chiocciola.

Le viti a rulli planetari Rexroth offrono al progettista numerose possibilità per risolvere compiti di traslazione (trasporto) e di posizionamento con vite rotante. Da Rexroth avrete la certezza di trovare prodotti personalizzati per applicazioni e casi d'impiego speciali.

Costruzione:

sia la vite che la chiocciola hanno un filetto identico a più principi con un angolo del profilo di 90°.

I codoli alle estremità dei rulli planetari sono alloggiati nei fori di due corone di guida circolari. Le estremità dei rulli presentano altresì delle dentature che ingranano con una seconda coppia di corone dentate interne alla chiocciola. I satelliti presentano una filettatura a un principio il cui profilo a fianchi convessi rotola sulle altre filettature senza strisciare.

Su entrambi i lati della chiocciola si trovano delle corone a dentatura interna che ingranano i rulli planetari. Le corone di guida invece alloggiano i codoli dei rulli planetari mantenendoli equidistanti fra di loro. Questo tipo di costruzione impedisce la penetrazione di particelle grossolane all'interno della chiocciola.

Versioni:

- chiocciola singola cilindrica con gioco assiale o precarico (ZEM-E-S)
- chiocciola singola flangiata con gioco assiale o precarico (FEM-E-S)

Viti di precisione PSR

Bosch Rexroth ha una lunga tradizione nella produzione di viti di precisione. Prodotte con grande attenzione alla qualità in diverse grandezze, esse sono da anni componenti essenziali della nostra gamma di unità viti a sfere.

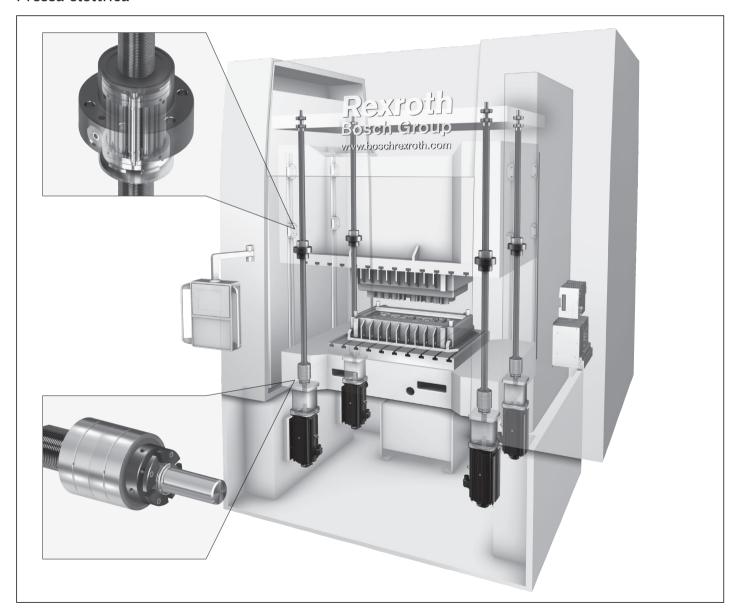
Ora abbiamo applicato le nostre tecnologie produttive di comprovata efficacia anche alle viti a rulli planetari.

Di conseguenza l'utente può contare su numerosi vantaggi fra cui:

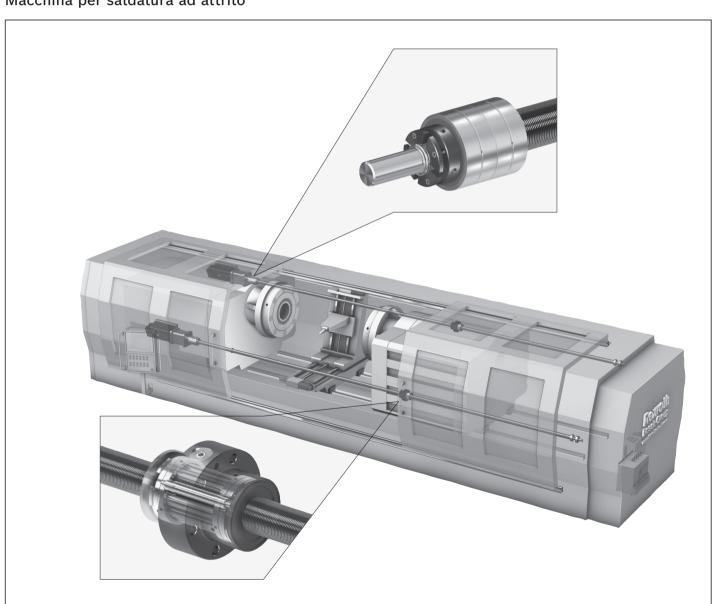
- qualità identica a quella delle unità di vite a sfere Rexroth
- consegna in tempi brevi
- prezzo conveniente grazie all'ottimizzazione dei costi di produzione

Vantaggi

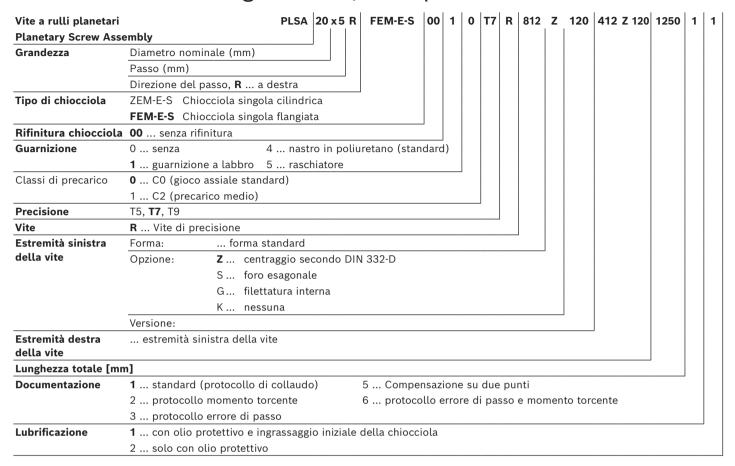
- Funzionamento regolare grazie al sistema di sincronizzazione dei rulli planetari
- Funzionamento particolarmente silenzioso
- Elevate velocità di corsa
- Grande numero di punti di contatto
- Fattori di carico elevati
- Elevato rendimento meccanico
- Lunga durata di vita
- Struttura compatta
- Elevata densità di potenza
- Guarnizione efficace, con funzione raschiante
- Consumo di lubrificante ridotto
- Possibilità di chiocciole precaricate
- Precisione di posizionamento e ripetibilità elevate


Esempi applicativi

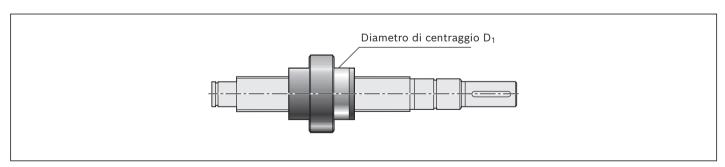
Le unità viti a rulli planetari Rexroth vengono impiegate con grande successo in molti settori applicativi:

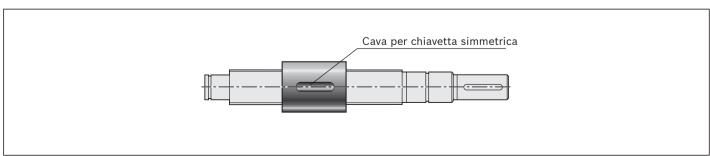

- macchine per lo stampaggio a iniezione di plastica
- macchine utensili
- banchi di misura e macchine per il controllo di materiali
- robotica
- industria automobilistica
- aeronautica
- automazione e handling

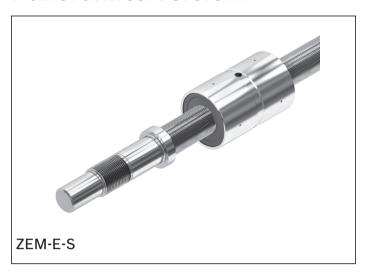
- industria alimentare e dell'imballaggio
- industria della stampa e cartaria
- tecnologia medicale
- lavorazione ad asportazione di truciolo
- lavorazione di deformazione
- industria metallurgica

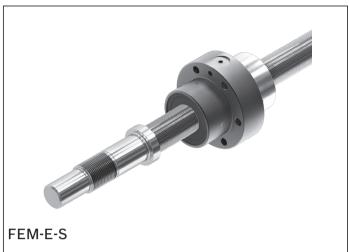

Pressa elettrica

Macchina per saldatura ad attrito




Sistematica delle sigle PLSA / dati per l'ordinazione


Direzione di montaggio dei tipi di chiocciola


Definizione: il diametro di centraggio delle chiocciole flangiate è orientato verso l'estremità destra della vite. Con chiocciole cilindriche la direzione di montaggio può essere scelta liberamente (essendo simmetriche).

Panoramica versioni

Abbreviazioni

С = fattore di carico dinamico = fattore di carico statico C_0

 $d_0 \times P = Grandezza$

= diametro nominale d_0

F_{aB} = carico di rottura assiale ghiera a tacche

= filettatura interna G = momento d'inerzia J_s

= numero di giri limite (grasso) n_{G} = numero di identificazione Nr.

 M_A = Coppia di serraggio ghiera a tacche coppia di serraggio grano filettato

momento d'attrito del cuscinetto con disco di M_{RL}

Мр = coppia motrice massima ammessa (presupposto: nessun carico radiale sul codolo di azionamento)

rigidezza (assiale) R_{fb}

= rigidezza al momento di ribaltamento R_{kl} passo (R = filettatura destrorsa)

velocità massima v_{max} S foro esagonale Ζ foro di centraggio

Chiocciola singola cilindrica ZEM-E-S

- Con guarnizioni standard
- Classe di precarico: C0, C2
- Per viti di precisione PSR delle classi di tolleranza T5, T7, T9 (solo per gioco assiale)

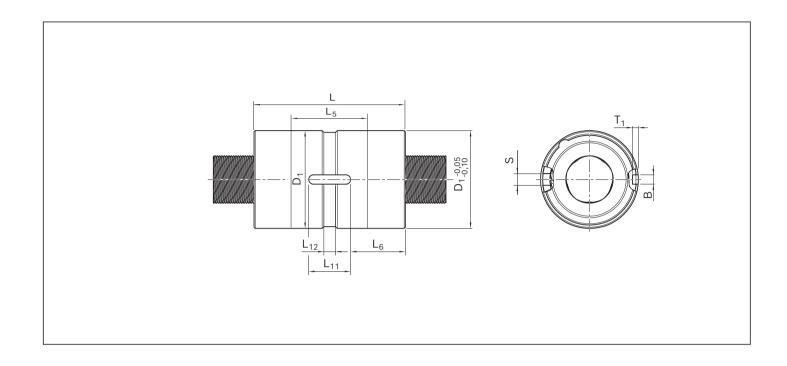
Nota: Fornitura esclusivamente come unità completa

Dati per l'ordinazione PLSA:

20 x 5R

PLSA

d ₀ x P	N°	C ¹⁾	C ₀ ¹⁾	v _{max} ²⁾
		(kN)	(kN)	(m/min)
20 x 5R	R157C A10 03	55	80	37,5
20 x 5R	R157C A10 13	55	80	37,5
25 x 5R	R157C 210 03	65	122	30,0
25 x 10R	R157C 230 03	74	118	60,0
30 x 5R	R157C 310 13	87	178	25,0
30 x 10R	R157C 330 03	101	174	50,0
39 x 5R	R157C 410 03	123	269	19,2
39 x 10R	R157C 430 03	145	271	38,4
48 x 5R	R157C 610 03	188	481	15,6
48 x 10R	R157C 630 03	220	475	31,2
48 x 20R	R157C 670 03	253	462	62,5
60 x 10R	R157C 730 03	322	780	25,0
60 x 20R	R157C 770 03	375	786	50,0
75 x 10R	R157C 830 03	480	1 487	20,0
75 x 20R	R157C 870 03	544	1 496	40,0

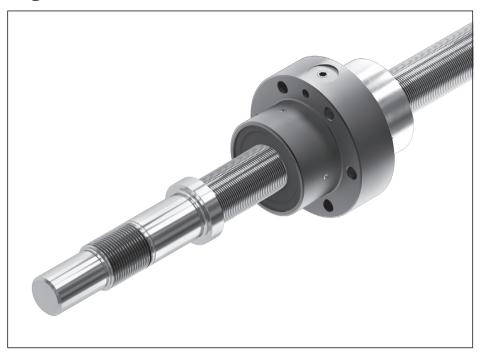

00 | 4 | 0 | T7 | R | 822Z150 | 412Z120 | 1250 | 1 | 1

ZEM-E-S

Sigle, vedi capitolo "Abbreviazioni"

¹⁾ I fattori di carico sono validi solo per la classe di tolleranza T5. Per altre classi di tolleranza tener conto del fattore di correzione f_{ac} a Pagina 251.

²⁾ Vedi "Fattore di velocità" a pagina 251 e "Velocità critica ncr" a pagina 270.



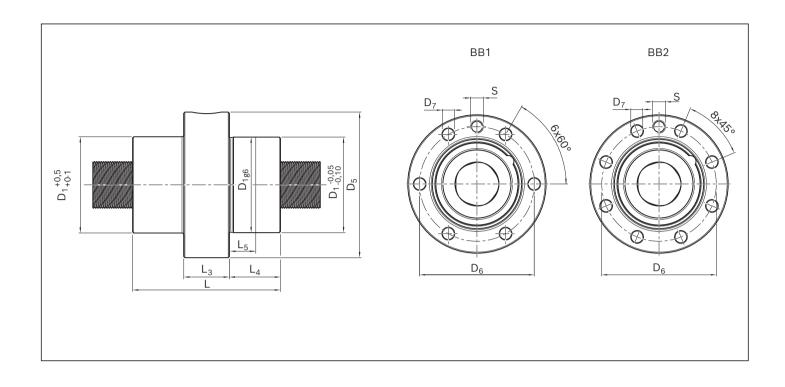
d ₀ x P	(mm)									Massa
	B P9	D _{1 g6}	L	L ₅	L ₆	L ₁₁ +0,2	L ₁₂	T ₁ +0,1	S	m (kg)
20 x 5R	4	42	65	34	23,5	18	5,0	2,5	2	0,62
20 x 5R	5	45	64	34	22,0	20	5,0	3,0	2	0,72
25 x 5R	6	53	78	50	26,5	25	5,0	3,5	5	0,72
25 x 10R	6	53	78	50	26,5	25	5,0	3,5	5	0,72
30 x 5R	6	64	85	53	26,5	32	5,0	3,5	5	1,25
30 x 10R	6	64	85	53	26,5	32	5,0	3,5	5	1,25
39 x 5R	8	80	100	64	30,0	40	7,0	4,0	5	2,00
39 x 10R	8	80	100	64	30,0	40	7,0	4,0	5	2,00
48 x 5R	8	100	127	87	41,0	45	7,0	4,0	5	4,20
48 x 10R	8	100	127	87	41,0	45	7,0	4,0	5	4,20
48 x 20R	8	100	127	87	41,0	45	7,0	4,0	5	4,20
60 x 10R	10	122	152	99	53,5	45	10,5	5,0	5	6,82
60 x 20R	10	122	152	99	53,5	45	10,5	5,0	5	6,80
75 x 10R	10	150	191	129	64,0	63	10,5	5,0	5	14,00
75 x 20R	10	150	191	129	64,0	63	10,5	5,0	5	13,70

Chiocciola singola flangiata FEM-E-S

- Con guarnizioni standard
- Classe di precarico: C0, C2
- Per viti di precisione PSR delle classi di tolleranza T5, T7, T9 (solo per gioco assiale)

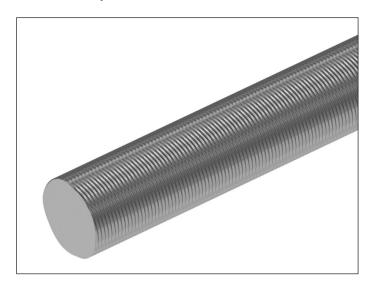
Nota: fornitura esclusivamente come unità completa

Dati per l'ordinazione PLSA:

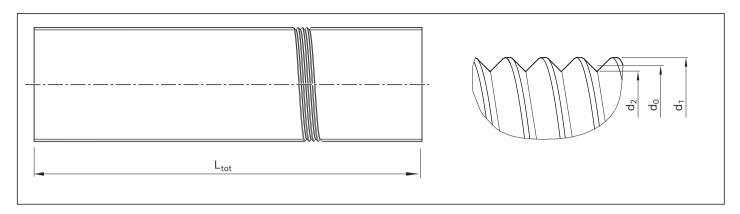

PLSA	20 x 5R	FEM-E-S	00	4	0	T5	R	812Z150	412Z120	1100	1	1

d ₀ x P	N°	C ¹⁾	C ₀ ¹⁾	v _{max} 2)
		(kN)	(kN)	(m/min)
20 x 5R	R157C A10 01	55	80	37,5
20 x 5R	R157C A10 11	55	80	37,5
25 x 5R	R157C 210 01	65	122	30,0
25 x 10R	R157C 230 01	74	118	60,0
30 x 5R	R157C 310 11	87	178	25,0
30 x 10R	R157C 330 01	101	174	50,0
39 x 5R	R157C 410 01	123	269	19,2
39 x 10R	R157C 430 01	145	271	38,4
48 x 5R	R157C 610 01	188	481	15,6
48 x 10R	R157C 630 01	220	475	31,2
48 x 20R	R157C 670 01	253	462	62,5
60 x 10R	R157C 730 01	322	780	25,0
60 x 20R	R157C 770 01	375	786	50,0
75 x 10R	R157C 830 01	480	1 487	20,0
75 x 20R	R157C 870 01	544	1 496	40,0

¹⁾ I fattori di carico sono validi solo per la classe di tolleranza T5. Per altre classi di tolleranza tener conto del fattore di correzione f_{ac} a Pagina 251.


Sigle, vedi capitolo "Abbreviazioni"

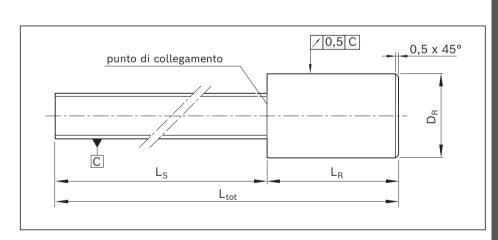
²⁾ Vedi "Fattore di velocità" a pagina 251 e "Velocità critica ncr" a pagina 270.


d ₀ x P	(mm)										Massa
	D ₁	D_5	Disposizione dei fori	L	D ₆	D_7	L ₃	L_4	L ₅	S	m (kg)
20 x 5R	42	64	BB1	65	53	5,5	20,0	22,5	11,0	M6	0,65
20 x 5R	45	68	BB1	64	56	5,5	18,0	23,0	11,0	M6	0,75
25 x 5R	56	84	BB1	78	70	6,6	20,0	29,0	15,0	M6	1,34
25 x 10R	56	84	BB1	78	70	6,6	20,0	29,0	15,0	M6	1,34
30 x 5R	64	98	BB1	85	81	9,0	27,0	29,0	13,0	M6	2,10
30 x 10R	64	98	BB1	85	81	9,0	27,0	29,0	13,0	M6	2,10
39 x 5R	80	124	BB1	100	102	11,0	33,0	33,5	15,5	M6	3,70
39 x 10R	80	124	BB1	100	102	11,0	33,0	33,5	15,5	M6	3,70
48 x 5R	105	150	BB1	127	127	13,5	37,0	45,0	25,0	M8 x 1	7,60
48 x 10R	105	150	BB1	127	127	13,5	37,0	45,0	25,0	M8 x 1	7,60
48 x 20R	105	150	BB1	127	127	13,5	37,0	45,0	25,0	M8 x 1	7,60
60 x 10R	122	180	BB1	152	150	17,5	45,0	53,5	27,0	M8 x 1	11,30
60 x 20R	122	180	BB1	152	150	17,5	45,0	53,5	27,0	M8 x 1	11,30
75 x 10R	150	210	BB2	191	180	17,5	45,0	73,0	42,0	M8 x 1	19,40
75 x 20R	150	210	BB2	191	180	17,5	45,0	73,0	42,0	M8 x 1	20,20

Vite di precisione PSR

d ₀ x P	(mm)					Massa		
			Lunghezza		Js	m		
	d ₁	d_2	standard	su richiesta	(kgcm²/m)	(kg/m)		
20 x 5R	20,3	19,5	1 500	2 500	1,22	2,45		
25 x 5R	25,3	24,1			2,99	3,85		
25 x 10R	25,6	24,0			2,96	3,82		
30 x 5R	30,3	29,5			6,21	5,54		
30 x 10R	30,5	29,1			6,15	5,51		
39 x 5R	39,3	38,5			17,64	9,36		
39 x 10R	39,5	38,1			17,64	9,33		
48 x 5R	48,3	47,5	3 000	5 000	40,88	14,21		
48 x 10R	48,5	47,1			40,62	14,16		
48 x 20R	49,4	46,1			40,19	14,01		
60 x 10R	60,5	59,1			99,38	22,15		
60 x 20R	61,1	58,1			98,38	22,03		
75 x 10R	75,5	74,1			243,37	34,67		
75 x 20R	76,1	73,1			241,32	34,51		

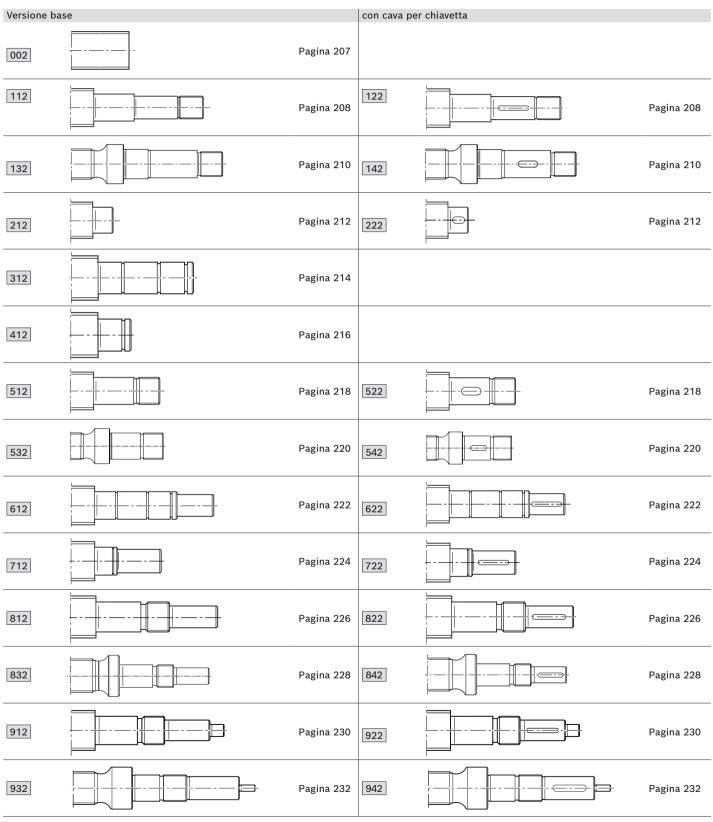
Viti di precisione PSR, con estremità delle viti collegate meccanicamente


Queste viti sono composte da

- una parte di vite e
- un codolo non lavorato.

Il codolo è collegato meccanicamente su un lato ed è disponibile in diverse grandezze.

Per evitare problemi nell'impiego di codoli di cuscinetti terminali troppo grandi (ad esempio gole filettate visibili o superfici assiali di contatto troppo piccole per il cuscinetto di vincolo assiale), offriamo possibilità di soluzione adeguate.
Vogliate contattarci.


Non è prevista la consegna separata di una vite senza estremità lavorate e chiocciola.

d ₀ x P	Classe di	(mm)			
(mm)	tolleranza	D _R	L_R	L_tot	Ls
		-1	+2		
20 x 5R		36,40	200	1 700	1 500
25 x 5R/10R		36,40	200	1 700	1 500
30 x 5R/10R		46,10	250	2 050	1 800
39 x 5R/10R	T5	76,25	400	2 300	1 900
48 x 5R/10R/20R		80,40	400	2 300	1 900
60 x 10R/20R		98,30	600	3 500	2 900
75 x 10R/20R		110,40	600	3 500	2 900

Panoramica estremità viti

Estremità delle viti, forme per estremità della vite sinistra o destra

Abbreviazioni

C = fattore di carico dinamico C₀ = fattore di carico statico

 $d_0 \times P = grandezza$

d₀ = diametro nominale

F_{aB} = carico di rottura assiale ghiera a tacche

G = filettatura interna

n_G = numero di giri limite (grasso) Nr. = numero di identificazione

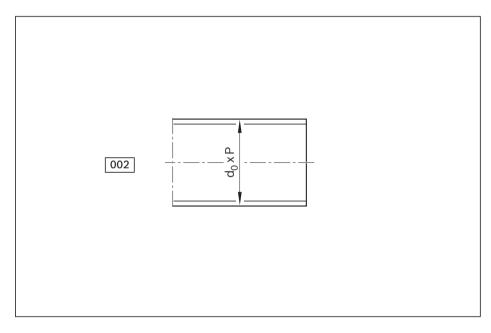
M_A = coppia di serraggio ghiera a tacche

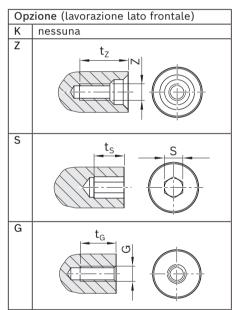
M_{AG} = coppia di serraggio grano filettato

M_{RL} = momento d'attrito del cuscinetto con disco di tenuta

M_p = coppia motrice massima ammessa

(presupposto: nessun carico radiale sul codolo di

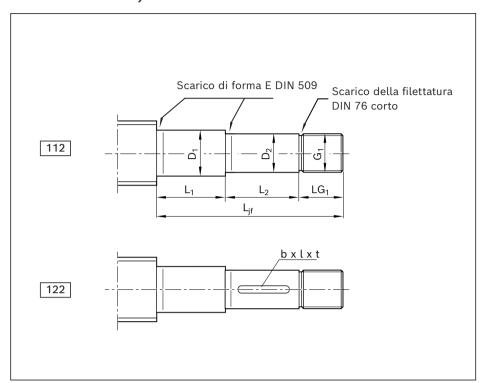

azionamento)

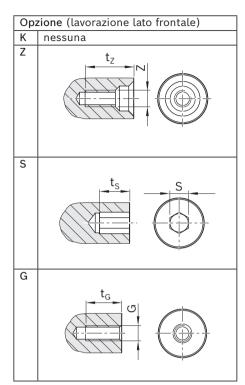

 R_{fb} = rigidezza (assiale)

R_{kl} = rigidezza al momento di ribaltamento P = passo (R = filettatura destrorsa)

S = foro esagonale Z = foro di centraggio

Forma 002





Dati per l'ordinazione:

PLSA	SA 20 x 5R		5R	FEM-E-S		00	1	0	T7	R 0	02K200	822	2K150	1250	1 1
Forma	Ve	rsione	Misure		(mm))			ı	_	1		2	1	
002	20	0	d ₀ x P 20 x 5		Z M6		16	t _z 5,0		S 8		t _s (0	л И6		t _G
	25	0	25 x 5/	10	M8		19	0,0		10	1	0 1	/18		12
	30	0	30 x 5/	10	M10		22	2,0		12	1	2 N	V110		15
	39	0	39 x 5/	10	M12		28	3,0		14	1	4 N	V112		18
	48	0	48 x 5/	10/20	M16		36	5,0		17	1	7 N	V116		24
	60	0	60 x 10)/20	M20		42	2,0		17	1	7 N	1 20		30
	75	0	75 x 10	/20	M20		42	2,0		19	1	9 1	1 24		36

Forma 112, 122

Indicazioni per l'ordine:

PLSA	PLSA 20 x 5R FEM-E-S 00 1 0 T7 R 122Z151 412K120 1250 1 1																		
Forma	Versione ¹⁾	Misure	(mm)							Cava p					Foro		Filetta	a-	
				_				1 - 1		second	O DIN			, 00	esago	1	tura		
		d ₀ x P	L _{jf}	D ₁ h6	L ₁	D ₂ h7	L ₂	G ₁	LG ₁	b P9	ι	t	Z	t _z	S	t _S	G	t _G	
112	150	20x5	60	15	23	12	25	M12x1	12	4	20	2,5	M4	10,0	4	4	M5	8	
122 ²⁾	151	20x5	87	15	50	12	25	M12x1	12	4	20	2,5	M4	10,0	4	4	M5	8	
	170	25X5	100	17	48	15	30	M15x1	22	5	25	3,0	M6	16	5	5	M6	9	
	170	25X10	100	17	48	15	30	M15x1	22	5	25	3,0	1	16	5	5	M6	9	
	171	25x5	106	17	54	15	30	M15x1	22	5	25	3,0		12,5	4	4	M6	9	
	171	25x10	106	17	54	15	30		22	5	25	3,0		12,5	4	4	M6	9	
	200	30x5	116	20	54	18	40		22	6	28	3,5		16,0	5	5		9	
	200	30x10	116	20	54	18	40		22	6	28	3,5		16,0	5	5		9	
	201	30x5	120	20	58	18	40		22	6	28	3,5		16,0	5	5		9	
	201	30x10	120	20	58	18	40		22	6	28	3,5		16,0	5	5		9	
	300	39x5	130	30	54	28	50	, .	26	8	36	4,0		22,0	8	8		15	
	300	39x10	130	30	54	28	50	, , .	26	8	36	4,0		22,0	8	8		15	
	301	39x5	150	30	74	28	50		26	8	36	4,0	Ļ	22,0	8	8		15	
	301	39x10	150	30	74	28	50	, , ,	26	8	36	4,0		22,0	8	8		15	
	350	48x5	152	35	66	32	60		26	10	40	5,0		22,0	10	10		18	
	350	48x10	152	35	66	32	60	, , ,	26	10	40	5,0		22,0	10	10		18	
	350	48x20	152	35	66	32	60		26	10	40	5,0		22,0	10	10		18	
	351	48x5	168	35	82	32	60	, , ,	26	10	40	5,0		22,0	10	10		18	
	351	48x10	168	35	82	32	60	, , ,	26	10	40	5,0		22,0	10	10		18	
	351	48x20	168	35	82	32	60	, , ,	26	10	40	5,0		22,0	10	10		18	
	450	60x10	186	45	98	42	60	, , ,	28	12	50	5,0		36,0	12	12		24	
	450	60x20	186	45	98	42	60	, , ,	28	12	50	5,0		36,0	12	12		24	
	600	75x10	234	60	122	58	80	M50x1,5	32	16	63	6,0	M16	36,0	17	17	M20	30	

1) Con la versione è possibile stabilire in modo univoco la correlazione tra le estremità delle viti e i gruppi cuscinetti di vincolo.

80 M50x1,5

16

6,0 M16

17 M20

58

2) Cava per chiavetta solo con forma 122

75x20

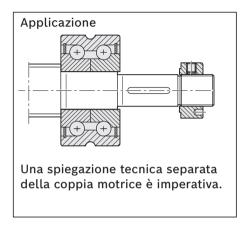
234

60

122

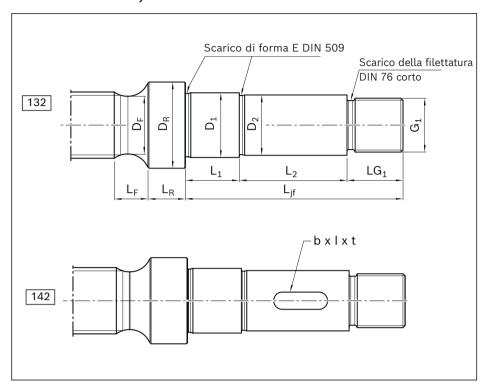
3) In preparazione

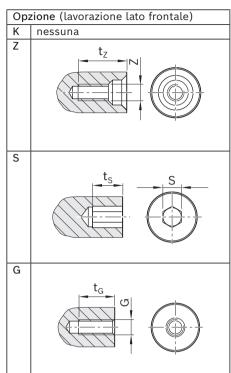
600


Cuscinetti di vincolo per viti con estremità di forma 112, 122

Il gruppo cuscinetti di vincolo LAF, LAN, LAS è composto da:

- 1 cuscinetto
- 1 ghiera a tacche





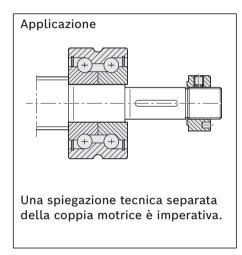
Versione ¹⁾	M _p (Nm)	Gruppo cuscinetti di vincolo		
		LAF Numero di identificazione	LAN Numero di identificazione	LAS Numero di identificazione
150	7,4	R159A 015 01	R159A 115 01	-
151	7,4		_	R159A 415 01
170	12,8	3)	3)	
170	19,9		3)	-
171	12,8	-	_	R159A 417 02
171	19,9	-	_	R159A 417 02
200	16,9	R159A 320 01	R159A 220 01	-
200	27,4	R159A 320 01	R159A 220 01	-
201	16,9	-	_	R159A 420 02
201	27,4	-	_	R159A 420 02
300	36,4	R1590 330 30	R1590 230 30	-
300	64,4	R1590 330 30	R1590 230 30	_
301	36,4	-	_	R159A 430 01
301	64,4	-	_	R159A 430 01
350	49,4	R159A 335 01	R159A 235 01	
350	90,6	R159A 335 01	R159A 235 01	-
350	141,1	R159A 335 01	R159A 235 01	-
351	49,4	-	-	R159A 435 01
351	90,6	-	_	R159A 435 01
351	141,1	-	_	R159A 435 01
450	172,0	-	_	R159A 445 01
450	289,0	-	_	R159A 445 01
600	252,1	-	_	R159A 460 01
600	443,2		_	R159A 460 01

Forma 132, 142

Indicazioni per l'ordine:

PLSA	20 x 5R	FEM-E-S	00	1	0 1	T7 R	142Z250	312Z120	1250	1	1	
------	---------	---------	----	---	-----	------	---------	---------	------	---	---	--

Forma	Versione ¹⁾	Grandezza	(mm)											
		d ₀ x P	L _{jf}	D ₁ h6	L ₁	D ₂ h7	L ₂	G ₁	LG ₁	D _R	L _R	D_F	L_{F}	
132	200	20x5	116	20	54	18	40	M17x1	22	27	7	19,2	14,0	
142 ²⁾	250	20x5	159	25	87	22	50	M20x1	22	34	7	19,2	26,0	
	251	25x5	138	25	66	22	50	M20x1	22	34	7	24,2	14,0	
	252	25x10	138	25	66	22	50	M20x1	22	34	7	23,7	14,0	
	253	25x5	159	25	87	22	50	M20x1	22	34	7	24,2	14,0	
	254	25x10	159	25	87	22	50	M20x1	22	34	7	23,7	14,0	
	300	30x5	150	30	74	28	50	M25x1,5	26	40	10	29,2	17,0	
	301	30x10	150	30	74	28	50	M25x1,5	26	40	10	28,7	17,0	
	350	30x5	194	35	108	32	60	M30x1,5	26	45	10	29,2	28,0	
	351	30x10	194	35	108	32	60	M30x1,5	26	45	10	28,7	28,0	
	400	39x5	178	40	90	38	60	M35x1,5	28	54	12	38,1	24,5	
	401	39x10	178	40	90	38	60	,-	28	54	12	37,7	24,5	
	500	39x5	245	50	137	48	80	M40x1,5	28	62	12	38,1	32,0	
	501	39x10	245	50	137	48	80	. , .	28	62	12	37,7	32,0	
	502	48x5	214	50	106	48	80	M40x1,5	28	62	12	47,2	22,0	
	503	48x10	214	50	106	48	80	M40x1,5	28	62	12	46,7	22,0	
	504	48x20	214	50	106	48	80	M40x1,5	28	62	12	45,6	22,0	
	650	48x5	312	65	178	62	100	M60x2	34	78	18	47,2	46,0	
	651	48x10	312	65	178	62	100	M60x2	34	78	18	46,7	46,0	
	654	48x20	312	65	178	62	100	M60x2	34	78	18	45,6	46,0	
	700	60x10	272	70	138	68	100		34	90	20	58,7	50,0	
	701	60x20	272	70	138	68	100	M65x2	34	90	20	57,7	50,0	
	652	60x10	312	65	178	62	100	M60x2	34	78	18	58,7	39,0	
	653	60x20	312	65	178	62	100	M60x2	34	78	18	57,7	39,0	
	900	75x10	327	90	169	88	120	M85x2	38	108	25	73,7	59,0	
	901	75x20	327	90	169	88	120	M85x2	38	108	25	72,7	59,0	
	902	75x10	391	90	233	88	120	M85x2	38	108	25	73,7	59,0	
	903	75x20	391	90	233	88	120	M85x2	38	108	25	72,7	59,0	

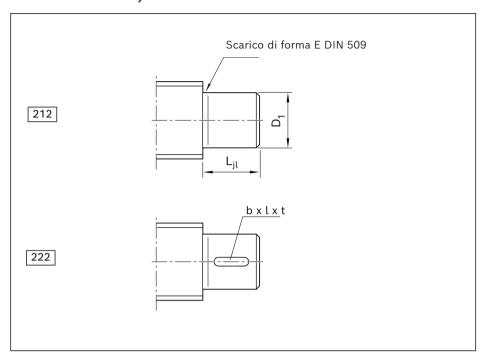

¹⁾ Con la versione è possibile stabilire in modo univoco la correlazione tra le estremità delle viti e i gruppi cuscinetti di vincolo.

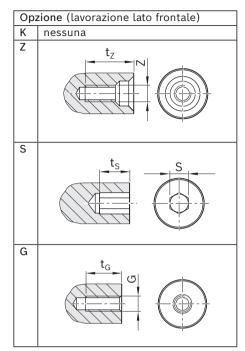
²⁾ Cava per chiavetta solo con forma 142

Cuscinetti di vincolo per viti con estremità di forma 132, 142

Il gruppo cuscinetti di vincolo LAS, FEC-F è composto da:

- 1 cuscinetto
- 1 ghiera a tacche

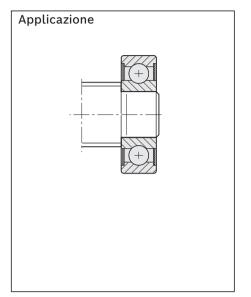




											M _p (Nm)	n) Gruppo cuscinetti di vincolo			
[Versione ¹⁾	Cava per chiave	tta secondo	DIN 6885 ²⁾	Foro di c	entraggio	Foro es	agonale	Filetta	atura					
		b	l	t	Z	tz	S	ts	G	t _G		LAS	FEC-F		
		P9										Numero di identificazione	Numero di identificazione		
	200	6	36	3,5	M6	16	5	5	M6	9	14,4	R159A 420 01	_		
	250	6	40	3,5	M6	16	5	5	M8	12	18,8	_	R159B 425 01		
	251	6	40	3,5	M6	16	5	5	M8	12	18,8	R159A 425 01	-		
	252	6	40	3,5	M6	16	5	5	M8	12	32,2	R159A 425 01	-		
	253	6	40	3,5	M6	16	5	5	M8	12	18,8	-	R159B 425 01		
	254	6	40	3,5	M6	16	5	5	M8	12	32,2	_	R159B 425 01		
	300	8	40	4,0	M10	22	8	8	M10	15	27,3	R159A 430 01	_		
	301	8	40	4,0	M10	22	8	8	M10	15	49,7	R159A 430 01	_		
	350	10	45	5,0	M10	22	10	10	M12	18	39,4	-	R159B 435 01		
	351	10	45	5,0	M10	22	10	10	M12	18	73,8	-	R159B 435 01		
	400	10	50	5,0	M12	28	12	12	M12	18	51,3	R159A 440 01	_		
	401	10	50	5,0	M12	28	12	12	M12	18	98,5	R159A 440 01	-		
	500	14	50	5,5	M16	36	12	12	M16	24	50,5	-	R159B 450 01		
	501	14	50	5,5	M16	36	12	12	M16	24	98,9	-	R159B 450 01		
	502	14	50	5,5	M16	36	12	12	M16	24	50,5	R159A 450 01	_		
	503	14	50	5,5	M16	36	12	12	M16	24	98,9	R159A 450 01	-		
	504	14	50	5,5	M16	36	12	12	M16	24	176,1	R159A 450 01	_		
	650	18	90	7,0	M20	42	19	19	M24	36	132,6	-	R159B 465 01		
	651	18	90	7,0	M20	42	19	19	M24	36	256,6	-	R159B 465 01		
	654	18	90	7,0	M20	42	19	19	M24	36	488,4	-	R159B 465 01		
	700	20	90	7,5	M20	42	19	19	M24	36	317,2	R159A 470 01	_		
	701	20	90	7,5	M20	42	19	19	M24	36	602,6	R159A 470 01	_		
	652	18	90	7,0	M20	42	19	19	M24	36	284,9	-	R159B 465 01		
	653	18	90	7,0	M20	42	19	19	M24	36	532,7	-	R159B 465 01		
	900	25	100	9,0	M20	42	19	19	M30	45	542,1	R159A 490 01	_		
	901	25	100	9,0	M20	42	19	19	M30	45	1054,6	R159A 490 01	_		
	902	25	100	9,0	M20	42	19	19	M30	45	542,1	-	R159B 490 01		
	903	25	100	9,0	M20	42	19	19	M30	45	1054,6	-	R159B 490 01		

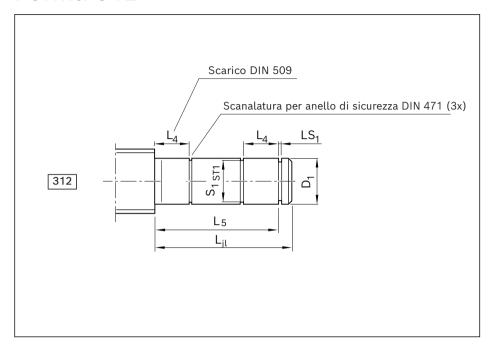
Forma 212, 222

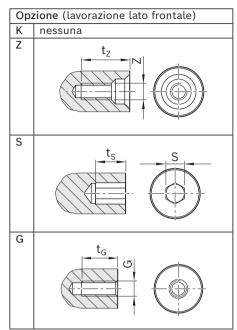
Dati per l'ordinazione:


PLSA 20 x 5R	FEM-E-S	00	1 0	T7	R	222Z150	412Z120	1250	1	1
--------------	---------	----	-----	----	---	---------	---------	------	---	---

Forma	Versione ¹⁾	Grandezza	(mm	า)										Cuscinetto	radiale rigido
			Ljl	D ₁	Cava	oer chi	avetta	Foro	di	Foro es	agonale	Filetta	atura	a sfere sec	ondo DIN 625 ³⁾
					secon	do DIN	6885 ²⁾	centr	aggio						
		d ₀ x P		j6	b	l	t	Z	tz	S	ts	G	t _G	Sigle	Gruppo cuscinetti di vincolo LAD
					P9										Numero di identificazione
212	120	20x5	13	12	4	8	2,5	M4	10,0	4	4	M5	8	6201.2RS	R3414 042 00
222 ²⁾	150	20x5	15	15	5	10	3,0	M5	12,5	4	4	M6	9	6202.2RS	R3414 074 00
	170	25x5/10	15	17	5	10	3,0	M6	16,0	5	5	M6	9	6203.2RS	R3414 050 00
	200	30x5/10	24	20	6	14	3,5	M6	16,0	5	5	M8	12	6204.2RS	R3414 038 00
	250	30x5/10	28	25	8	18	4,0	M10	22,0	8	8	M10	15	6205.2RS	R3414 063 00
	300	39x5/10	28	30	8	18	4,0	M10	22,0	10	10	M12	18	6206.2RS	R3414 051 00
	350	48x5/10/20	32	35	10	22	5,0	M12	28,0	12	12	M12	18	6207.2RS	R3414 075 00
	500	60x10/20	46	50	14	36	5,5	M16	36,0	19	19	M20	30	6210.2RS	R3414 077 00
	600	75x10/20	60	60	18	50	7,0	M20	42,0	19	19	M24	36	6212.2RS	R3414 078 00

- 1) Con la versione è possibile stabilire in modo univoco la correlazione tra le estremità delle viti e i gruppi cuscinetti di vincolo.
- 2) Cava per chiavetta solo con forma 222
- 3) Cuscinetto radiale rigido a sfere solo con forma 212
- 4) Fornitura: 1 cuscinetto, 2 anelli di sicurezza


Per le sigle vedi capitolo "Abbreviazioni"

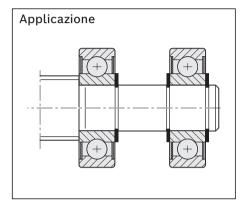

Cuscinetti di vincolo per viti con estremità di forma 212

Forma 312

Dati per l'ordinazione:

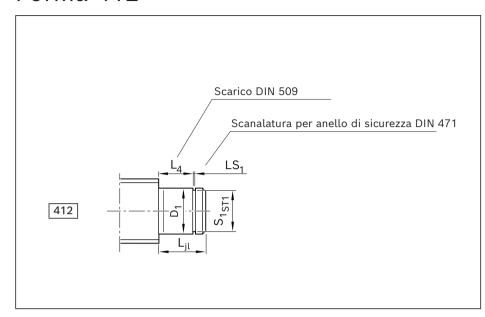
PLSA	20 x 5R	FEM-E-S	00	1	0	T7	R	312Z120	822K150	1250	1	1

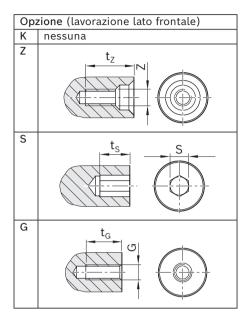
Forma	Versione ¹⁾	Grandezza	(mm))												Gruppo cuscinetti di
										Foro di	centraggio	Foro esa	agonale	Filett	atura	vincolo LAD
		d ₀ x P	D ₁	Ljl	L_4	L ₅	S ₁	ST1	LS ₁	Z	tz	S	ts	G	t_{G}	
			j6						H13							Numero di identificazione
312	120	20 x 5	12	43	10	40	11,5	h11	1,10	M4	10,0	4	4	M5	8	R1590 612 00
	150	20 x 5	15	47	11	44	14,3	h11	1,10	M5	12,5	4	4	M6	9	R1590 615 00
	170	25 x 5/10	17	51	12	48	16,2	h11	1,10	M6	16,0	5	5	M6	9	R1590 617 00
	200	30 x 5/10	20	60	14	56	19,0	h11	1,30	M6	16,0	5	5	M8	12	R1590 620 00
	250	30 x 5/10	25	64	15	60	23,9	h12	1,30	M10	22,0	8	8	M10	15	R1590 625 00
	300	39 x 5/10	30	68	16	64	28,6	h12	1,60	M10	22,0	10	10	M12	18	R1590 630 00
	350	48 x 5/10/20	35	73	17	68	33,0	h12	1,60	M12	28,0	12	12	M12	18	R1590 635 00
	500	60 x 10/20	50	87	20	80	47,0	h12	2,15	M16	36,0	19	19	M20	30	R1590 650 00
	600	75 x 10/20	60	95	22	88	57,0	h12	2,15	M20	42,0	19	19	M24	36	R1590 660 00


¹⁾ Con la versione è possibile stabilire in modo univoco la correlazione tra le estremità delle viti e i gruppi cuscinetti di vincolo. Nota: la forma 312 con due cuscinetti di vincolo radiale aumenta la velocità critica, vedi "Velocità critica ncr" a pagina 270.

Sigle, vedi capitolo "Abbreviazioni"

Cuscinetti di vincolo per viti con estremità di forma 312


Il gruppo cuscinetti di vincolo LAD è composto da:

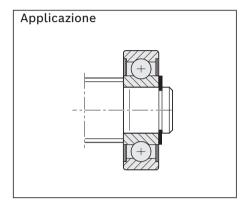

- 1 cuscinetto (2x necessari)
- 2 anelli di sicurezza

Forma 412

Dati per l'ordinazione:

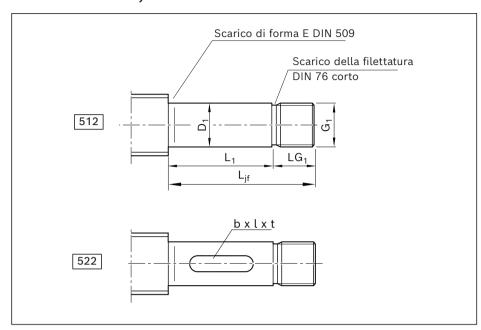
PLSA	20 x 5R	FEM-E-S	00	1	0	T7	R	412Z120	822K150	1250	1	1
					_							

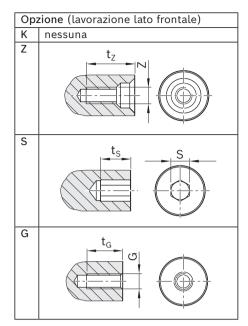
Forma	Versione ¹⁾	Misure	(mm)				Gruppo cuscinetti di							
									Foro di	centraggio	Foro es	agonale	Filetta	tura	vincolo LAD
		d ₀ x P	D ₁	Ljl	L ₄	S ₁	ST1	LS ₁	Z	tz	S	ts	G	t _G	
			j6					H13							Numero di identificazione
412	120	20 x 5	12	13	10	11,5	h11	1,10	M4	10,0	4	4	M5	8	R1590 612 00
	150	20 x 5	15	14	11	14,3	h11	1,10	M5	12,5	4	4	M6	9	R1590 615 00
	170	25 x 5/10	17	15	12	16,2	h11	1,10	M6	16,0	5	5	M6	9	R1590 617 00
	200	30 x 5/10	20	18	14	19,0	h11	1,30	M6	16,0	5	5	M8	12	R1590 620 00
	250	30 x 5/10	25	19	15	23,9	h12	1,30	M10	22,0	8	8	M10	15	R1590 625 00
	300	39 x 5/10	30	20	16	28,6	h12	1,60	M10	22,0	10	10	M12	18	R1590 630 00
	350	48 x 5/10/20	35	22	17	33,0	h12	1,60	M12	28,0	12	12	M12	18	R1590 635 00
	500	60 x 10/20	50	27	20	47,0	h12	2,15	M16	36,0	19	19	M20	30	R1590 650 00
	600	75 x 10/20	60	29	22	57,0	h12	2,15	M20	42,0	19	19	M24	36	R1590 660 00


¹⁾ Con la versione è possibile stabilire in modo univoco la correlazione tra le estremità delle viti e i gruppi cuscinetti di vincolo.

Per le sigle vedi capitolo "Abbreviazioni"

Cuscinetti di vincolo per viti con estremità di forma 412


Il gruppo cuscinetti di vincolo LAD è composto da: - 1 cuscinetto


- 2 anelli di sicurezza

Forma 512, 522

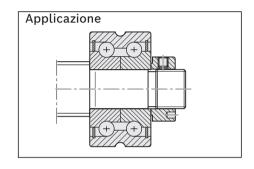
					- 1							. 1
PLSA	20 x 5R	FEM-E-S	$- \cap \cap$	11	\sim	T7	D	L117150	2127120	1250	11	. 1
FLOA	20 X 3N	LEINI-E-9	I UU I		U	1/		13 122 130	3122120	1230		

Forma	Versione ¹⁾	Misure	(mm)														
								Cava per c	hiavetta se	condo DIN 6885 ²⁾	Foro di	centraggio	Foro esa	agonale	Filett	atura	
		d₀ x P	L _{jf}	D_1	L ₁	G ₁	LG ₁	b	l	t	Z	l t _z	S	ts	G	t _G	
			h6					P9									
512/	150	20 x 5	45	15	23	M15X1	22	5	14	3,0	M5	12,5	4	4	M6	9	
522 ²⁾	151	20 x 5	72	15	50	M15x1	22	5	25	3,0	M5	12,5	4	4	M6	9	
	170	25 x 5	70	17	48	M17x1	22	5	25	3,0	M6	16	5	5	M6	9	
		25 x 10	70	17	48	M17x1	22	5	25	3,0	M6	16	5	5	M6	9	
	171	25 x 5	76	17	54	M17x1	22	5	25	3,0	M6	16,0	5	5	M6	9	
		25 x 10	76	17	54	M17x1	22	5	25	3,0	M6	16,0	5	5	M6	9	
	200	30 x 5	76	20	54	M20x1	22	6	28	3,5	M6	16,0	5	5	M8	12	
		30 x 10	76	20	54	M20x1	22	6	28	3,5	M6	16,0	5	5	M8	12	
	201	30 x 5	80	20	58	M20x1	22	6	28	3,5	M6	16,0	5	5	M8	12	
		30 x 10	80	20	58	M20x1	22	6	28	3,5	M6	16,0	5	5	M8	12	
	300	39 x 5	80	30	54	M30x1,5	26	8	36	4,0	M10	22,0	10	10	M12	18	
		39 x 10	80	30	54	M30x1,5	26	8	36	4,0	M10	22,0	10	10	M12	18	
	301	39 x 5	100	30	74	M30x1,5	26	8	36	4,0	M10	22,0	10	10	M12	18	
		39 x 10	100	30	74	M30x1,5	26	8	36	4,0	M10	22,0	10	10	M12	18	
	350	48 x 5	94	35	66	M35x1,5	28	10	40	5,0	M12	28,0	12	12	M12	18	
		48 x 10	94	35	66	M35x1,5	28	10	40	5,0	M12	28,0	12	12	M12	18	
		48 x 20	94	35	66	M35x1,5	28	10	40	5,0	M12	28,0	12	12	M12	18	
	351	48 x 5	110	35	82	M35x1,5	28	10	40	5,0	M12	28,0	12	12	M12	18	
		48 x 10	110	35	82	M35x1,5	28	10	40	5,0	M12	28,0	12	12	M12	18	
		48 x 20	110	35	82	M35x1,5	28	10	40	5,0	M12	28,0	12	12	M12	18	
	450	60 x 10	126	45	98	M45x1,5	28	14	63	5,5	M16	36,0	14	14	M16	24	
		60 x 20	126	45	98	M45x1,5	28	14	63	5,5	M16	36,0	14	14	M16	24	
	600	75 x 10	156	60	122	M60x2	34	18	80	7,0	M20	42,0	19	19	M24	36	
		75 x 20	156	60	122	M60x2	34	18	80	7,0	M20	42,0	19	19	M24	36	

¹⁾ Con la versione è possibile stabilire in modo univoco la correlazione tra le estremità delle viti e i gruppi cuscinetti di vincolo.

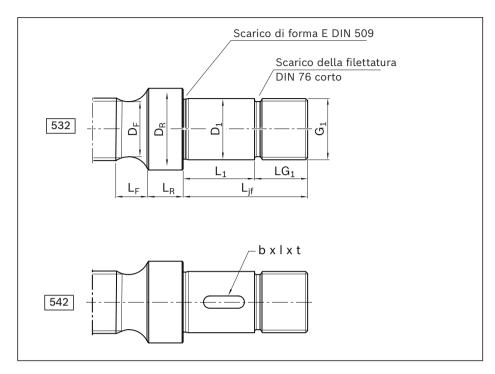
²⁾ Cava per chiavetta solo con forma 522

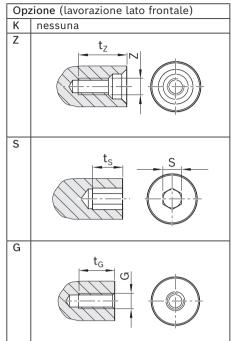
³⁾ In preparazione


Cuscinetti di vincolo per viti con estremità di forma 512

Il gruppo cuscinetti di vincolo LAF, LAN, LAS è composto da:

- 1 cuscinetto
- 1 ghiera a tacche





Versione ¹⁾	Misure	M _p (Nm)	Gruppo cuscinetti di vincolo	٥	
	d ₀ x P		LAF Numero di identificazione	LAN Numero di identificazione	LAS Numero di identificazione
150	20 x 5		R159A 015 01	R159A 115 01	_
151	20 x 5	12,1		-	R159A 415 01
170	25 x 5	15,9	1	3)	
	25 x 10	25,7		3)	_
171	25 x 5	15,9		-	R159A 417 02
	25 x 10	25,7	_	1-	R159A 417 02
200	30 x 5	21,8	R159A 320 01	R159A 220 01	_
	30 x 10	38,5	R159A 320 01	R159A 220 01	
201	30 x 5	21,8	_	1-	R159A 420 02
	30 x 10	38,5	1	1-	R159A 420 02
300	39 x 5	45,7	R1590 330 30	R1590 230 30	
	39 x 10	85,5	R1590 330 30	R1590 230 30	
301	39 x 5	45,7	_	1-	R159A 430 01
	39 x 10	85,5	_	-	R159A 430 01
350	48 x 5	62,0	R159A 335 01	R159A 235 01	
	48 x 10	119,0	R159A 335 01	R159A 235 01	_
	48 x 20	193,7	R159A 335 01	R159A 235 01	_
351	48 x 5	62,0	_	-	R159A 435 01
	48 x 10	119,0	_	-	R159A 435 01
	48 x 20	193,7	_	-	R159A 435 01
450	60 x 10	178,2	_	-	R159A 445 01
	60 x 20	325,1	-	-	R159A 445 01
600	75 x 10	296,7	-	_	R159A 460 01
	75 x 20	573,8	1	_	R159A 460 01

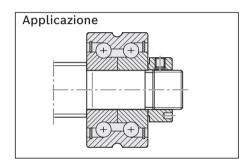
Sigle, vedi capitolo "Abbreviazioni"

Forma 532, 542

Dati per l'ordinazione:

PLSA 20 x 5R FEM-E-S 00 1 0 T7 R 532Z200 412Z120 1250 1 1

Forma	Versione ¹⁾	Grandezza	(mm)												
												Cava per chiavetta	secondo D	IN 6885 ²⁾	
		d ₀ x P	Ljf	D_1	L ₁	G ₁	LG ₁	D _R	L_R	D_F	L _F	b	ι	t	
				h6								P9			
532	200	20 x 5	76	20	54	M20x1	22	27	7	19,2	14,0	6	36	3,5	
542 ²⁾	250	20 x 5	113	25	87	M25x1,5	26	34	7	19,2	26,0	8	40	4,0	
	252	25 x 5	92	25	66	M25x1,5	26	34	7	24,2	14,0	8	40	4,0	
	253	25 x 10	92	25	66	M25x1,5	26	34	7	23,7	14,0	8	40	4,0	
	254	25 x 5	113	25	87	M25x1,5	26	34	7	24,2	14,0	8	40	4,0	
	255	25 x 10	113	25	87	M25x1,5	26	34	7	23,7	14,0	8	40	4,0	
	300	30 x 5	100	30	74	M30x1,5	26	40	10	29,2	17,0	8	40	4,0	
	301	30 x 10	100	30	74	M30x1,5	26	40	10	28,7	17,0	8	40	4,0	
	350	30 x 5	136	35	108	M35x1,5	28	45	10	29,2	28,0	10	45	5,0	
	351	30 x 10	136	35	108	M35x1,5	28	45	10	28,7	28,0	10	45	5,0	
	400	39 x 5	118	40	90	M40x1,5	28	54	12	38,1	24,5	12	50	5,0	
	401	39 x 10	118	40	90	M40x1,5	28	54	12	37,7	24,5	12	50	5,0	
	500	39 x 5	169	50	137	M50x1,5	32	62	12	38,1	32,0	14	50	5,5	
	501	39 x 10	169	50	137	M50x1,5	32	62	12	37,7	32,0	14	50	5,5	
	502	48 x 5	138	50	106	M50x1,5	32	62	12	47,2	22,0	14	50	5,5	
	503	48 x 10	138	50	106	M50x1,5	32	62	12	46,7	22,0	14	50	5,5	
	504	48 x 20	138	50	106	M50x1,5	32	62	12	45,6	22,0	14	50	5,5	
	650	48 x 5	212	65	178	M65x2	34	78	18	47,2	46,0	18	90	7,0	
	651	48 x 10	212	65	178	M65x2	34	78	18	46,7	46,0	18	90	7,0	
	654	48 x 20	212	65	178	M65x2	34	78	18	45,6	46,0	18	90	7,0	
	700	60 x 10	174	70	138	M70x2	36	90	20	58,7	50,0	20	90	7,5	
	701	60 x 20	174	70	138	M70x2	36	90	20	57,7	50,0	20	90	7,5	
	652	60 x 10	212	65	178	M65x2	34	78	18	58,7	39,0	18	90	7,0	
	653	60 x 20	212	65	178	M65x2	34	78	18	57,7	39,0	18	90	7,0	
	900	75 x 10	209	90	169	M90x2	40	108	25	73,7	59,0	25	100	9,0	
	901	75 x 20	209	90	169	M90x2	40	108	25	72,7	59,0	25	100	9,0	
	902	75 x 10	273	90	233	M90x2	40	108	25	73,7	59,0	25	100	9,0	
	903	75 x 20	273	90	233	M90x2	40	108	25	72,7	59,0	25	100	9,0	

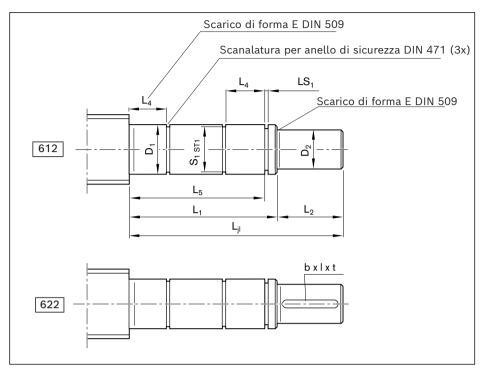

¹⁾ Con la versione è possibile stabilire in modo univoco la correlazione tra le estremità delle viti e i gruppi cuscinetti di vincolo.

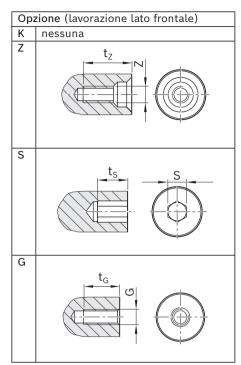
²⁾ Cava per chiavetta solo con forma 542

Cuscinetti di vincolo per viti con estremità di forma 532

Il gruppo cuscinetti di vincolo FEC-F, LAS è composto da:

- 1 cuscinetto
- 1 ghiera a tacche





								Mı	p (Nm)	Gruppo cuscinetti di vincolo	
									forma		
· ·	Versione ¹⁾	Foro di ce	ntraggio	Foro esago	onale	Filettatura	a	532	542	LAS	FEC-F
		Z	tz	S	ts	G	t _G			1	
										Numero di identificazione	Numero di identificazione
1	200	M6	16	5	5	M6	9	22,7	22,0	R159A 420 01	_
	250	M6	16	5	5	M8	12	29,2	29,2	- '	R159B 425 01
	252	M10	22	8	8	M10	15	33,0	33,0	R159A 425 01	-
1	253	M10	22	8	8	M10	15	59,9	59,9	R159A 425 01	-
	254	M10	22	8	8	M10	15	33,0	33,0	-	R159B 425 01
	255	M10	22	8	8	M10	15	59,9	59,9	- '	R159B 425 01
	300	M10	22	8	8	M10	15	45,3	45,3	R159A 430 01	-
	301	M10	22	8	8	M10	15	84,9	84,9	R159A 430 01	-
	350	M10	22	10	10	M12	18	54,3	54,3	-	R159B 435 01
	351	M10	22	10	10	M12	18	110,1	110,1	- '	R159B 435 01
	400	M12	28	12	12	M12	18	79,2	79,2	R159A 440 01	-
	401	M12	28	12	12	M12	18	154,2	154,2	R159A 440 01	_
	500	M16	36	12	12	M16	24	91,1	91,1	-	R159B 450 01
	501	M16	36	12	12	M16	24	175,4	175,4	-	R159B 450 01
	502	M16	36	1	1 1	M16	24	110,7	110,7	R159A 450 01	-
	503	M16	36	12	12	M16	24	217,4	217,4	R159A 450 01	_
	504	M16	36	12	12	M16	24	412,6	412,6	R159A 450 01	
	650	M20	42			M24	36	132,6			R159B 465 01
	651	M20	42		-	M24	36	256,6		1	R159B 465 01
		M20	42	19		M24	36	465,4	,	1	
	700	M20	42			M24	36	385,3		R159A 470 01	
	701	M20	42			M24	36	721,6		R159A 470 01	-
	652	M20	42	19	19	M24	36	373,5	373,5	-	R159B 465 01
	653	M20	42			M24	36	701,3	701,3		R159B 465 01
	900	M20	42	19	19	M30	45	596,7	,	R159A 490 01	_
	901	M20	42	19	19	M30	45	1137,4	1137,4	R159A 490 01	_
	902	M20	42	19	19	M30	45	596,7	596,7	- '	R159B 490 01
	903	M20	42	19	19	M30	45	1137,4	1137,4	-	R159B 490 01

Per le sigle vedi capitolo "Abbreviazioni"

Forma 612, 622

PLSA	20 x 5R	FEM-E-S	00	1	0	T7	R	622Z150	822K150	1250	1	1

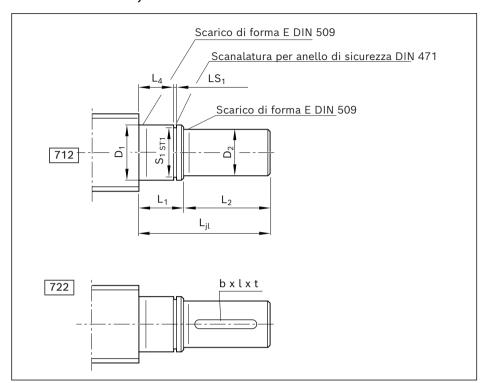
Forma	Versione ¹⁾	Misure	(mm)										
		d ₀ x P	L _{jl}	D_1	L ₁	D_2	L ₂	L_4	L ₅	S ₁	ST1	LS ₁	
				j6		h7						H13	
612	120	20 x 5	68	12	43	10	25	10	40	11,5	h11	1,10	
6222)	150	20 x 5	72	15	47	12	25	11	44	14,3	h11	1,10	
	170	25 x 5	81	17	51	15	30	12	48	16,2	h11	1,10	
		25 x 10	81	17	51	15	30	12	48	16,2	h11	1,10	
	200	30 x 5	100	20	60	18	40	14	56	19,0	h11	1,30	
		30 x 10	100	20	60	18	40	14	56	19,0	h11	1,30	
	250	30 x 5	114	25	64	22	50	15	60	23,9	h12	1,30	
		30 x 10	114	25	64	22	50	15	60	23,9	h12	1,30	
	300	39 x 5	118	30	68	28	50	16	64	28,6	h12	1,60	
		39 x 10	118	30	68	28	50	16	64		h12	1,60	
	350	48 x 5	133	35	73	32	60	17	68	33,0	h12	1,60	
		48 x 10	133	35	73	32	60	17	68	33,0	h12	1,60	
		48 x 20	133	35	73	32	60	17	68	33,0	h12	1,60	
	500	60 x 10	167	50	87	48	80	20	80	47,0		2,15	
		60 x 20	167	50	87	48	80	20	80	47,0	h12	2,15	
	600	75 x 10	175	60	95	58	80	22	88	57,0		2,15	
		75 x 20	175	60	95	58	80	22	88	57,0	h12	2,15	

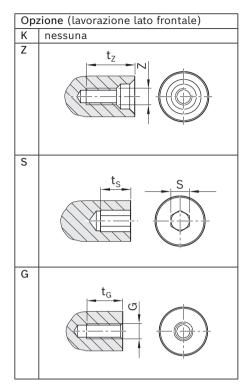
Con la versione è possibile stabilire in modo univoco la correlazione tra le estremità delle viti e i gruppi cuscinetti di vincolo.
 Nota: la forma 312 con due cuscinetti di vincolo radiale aumenta la velocità critica, vedi "Velocità critica ncr" a pagina 270.

²⁾ Cava per chiavetta solo con forma 622

³⁾ Fornitura per gruppo: 1 cuscinetto, 2 anelli di sicurezza. Per l'applicazione su forma 612-622: sono necessari due gruppi.

Cuscinetti di vincolo per viti con estremità di forma 612, 622



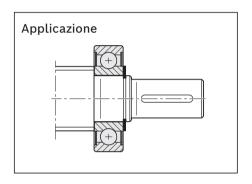


											N	մ թ (Nm)	Gruppo cuscinetti
Versione ¹⁾	Misure	Cava per c	hiavetta se	condo DIN 6885 ²⁾	Foro di c	entraggio	Foro esa	agonale	Filetta	atura		forma	di vincolo
	d ₀ x P	b	U	t	Z	tz	S	ts	G	tg	612	622	LAD ³⁾
		P9											Numero di identificazione
120	20 x 5	3	20	1,8	М3	9,0	4	4	M4	6	16,2	12,7	R1590 612 00
150	20 x 5	4	20	· ·	M4	10,0	4	4	M5	8	29,1	21,6	R1590 615 00
170	25 x 5	5	25	3,0	M5	12,5	4	4	M6	9	40,2	40,2	R1590 617 00
	25 x 10	5	25	3,0	M5	12,5	4	4	M6	9	40,2	40,2	R1590 617 00
200	30 x 5	6	28	3,5	M6	16,0	5	5	M6	9	54,3	54,3	R1590 620 00
	30 x 10	6	28	3,5	M6	16,0	5	5	M6	9	61,4	61,4	R1590 620 00
250	30 x 5	6	36	3,5	M8	19,0	6	6	M8	12	54,3	54,3	R1590 625 00
	30 x 10	6	36	3,5	M8	19,0	6	6	M8	12	111,5	111,5	R1590 625 00
300	39 x 5	8	36	4,0	M10	22,0	10	10	M10	15	93,1	93,1	R1590 630 00
[[39 x 10	8	36	4,0	M10	22,0	10	10	M10	15	173,8	173,8	R1590 630 00
350	48 x 5	10	40	5,0	M12	28,0	10	10	M12	18	137,4	137,4	R1590 635 00
	48 x 10	10	40	5,0	M12	28,0	10	10	M12	18	244,9	244,9	R1590 635 00
	48 x 20	10	40	5,0	M12	28,0	10	10	M12	18	244,9	244,9	R1590 635 00
500	60 x 10	14	63	5,5	M16	36,0	17	17	M16	24	444,9	444,9	R1590 650 00
	60 x 20	14	63	5,5	M16	36,0	17	17	M16	24	610,1	610,1	R1590 650 00
600	75 x 10	16	63	6,0	M20	42,0	19	19	M20	30	692,8	692,8	R1590 660 00
	75 x 20	16	63	6,0	M20	42,0	19	19	M20	30	1040,4	1040,4	R1590 660 00

Per le sigle vedi capitolo "Abbreviazioni"

Forma 712, 722

•												
PLSA	20 x 5R	FEM-E-S	00	1	0	T7	R	712Z120	822K150	1250	1	1

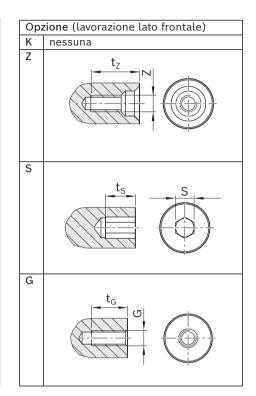

Forma	Versione ¹⁾	Misure	(mm)									
		d ₀ x P	L _{jl}	D ₁	L ₁	D ₂	L ₂	L ₄	S ₁	ST1	LS ₁	
712	120	20 x 5	38	12	13	10	25	10	11,5	h11	1,10	
722 ²⁾	150	20 x 5	39	15	14	12	25	11	14,3	h11	1,10	
	170	25 x 5	45	17	15	15	30	12	16,2	h11	1,10	
		25 x 10	45	17	15	15	30	12	16,2	h11	1,10	
	200	30 x 5	58	20	18	18	40	14	19,0	h11	1,30	
		30 x 10	58	20	18	18	40	14	19,0	h11	1,30	
	250	30 x 5	69	25	19	22	50	15	23,9	h12	1,30	
		30 x 10	69	25	19	22	50	15	23,9	h12	1,30	
	300	39 x 5	70	30	20	28	50	16	28,6	h12	1,60	
		39 x 10	70	30	20	28	50	16	28,6	h12	1,60	
	350	48 x 5	82	35	22	32	60	17	33,0	h12	1,60	
		48 x 10	82	35	22	32	60	17	33,0	h12	1,60	
		48 x 20	82	35	22	32	60	17	33,0	h12	1,60	
	500	60 x 10	107	50	27	48	80	20	47,0	h12	2,15	
		60 x 20	107	50	27	48	80	20	47,0	h12	2,15	
350 350	600	75 x 10	109	60	29	58	80	22	57,0	h12	2,15	
		75 x 20	109	60	29	58	80	22	57,0	h12	2,15	

¹⁾ Con la versione è possibile stabilire in modo univoco la correlazione tra le estremità delle viti e i gruppi cuscinetti di vincolo.

²⁾ Cava per chiavetta solo con forma 722

³⁾ Fornitura per gruppo: 1 cuscinetto, 2 anelli di sicurezza.

Cuscinetti di vincolo per viti con estremità di forma 712, 722



											N	1 _p (Nm)	Gruppo
Versione ¹⁾	Misure	Cava per chia	avetta secon	do DIN 6885 ²⁾	Foro di c	entraggio	Foro esa	agonale	Filetta	atura		Forma	Cuscinetto
	d₀ x P	b	l	t	Z	tz	S	t_S	G	t _G	712	722	LAD ²⁾
		P9											Numero di identificazione
120	20 x 5	3	20	1,8	M3	9,0	4	4	M4	6	16,2	12,7	R1590 612 00
150	20 x 5	4	20	2,5	M4	10,0	4	4	M5	8	29,1	21,6	R1590 615 00
170	25 x 5	5	25	3,0	M5	12,5	4	4	M6	9	40,2	40,2	R1590 617 00
	25 x 10	5	25	3,0	M5	12,5	4	4	M6	9	40,2	40,2	R1590 617 00
200	30 x 5	6	28	3,5	M6	16,0	5	5	M6	9	54,3	54,3	R1590 620 00
	30 x 10	6	28	3,5	M6	16,0	5	5	M6	9	61,4	61,4	R1590 620 00
250	30 x 5	6	36	3,5	M8	19,0	6	6	M8	12	54,3	54,3	R1590 625 00
	30 x 10	6	36	3,5	M8	19,0	6	6	M8	12	111,5	111,5	R1590 625 00
300	39 x 5	8	36	4,0	M10	22,0	10	10	M10	15	93,1	93,1	R1590 630 00
	39 x 10	8	36	4,0	M10	22,0	10	10	M10	15	173,8	173,8	R1590 630 00
350	48 x 5	10	40	5,0	M12	28,0	10	10	M12	18	137,4	137,4	R1590 635 00
]	48 x 10	10	40	5,0	M12	28,0	10	10	M12	18	244,9	244,9	R1590 635 00
	48 x 20	10	40	5,0	M12	28,0	10	10	M12	18	244,9	244,9	R1590 635 00
500	60 x 10	14	63	5,5	M16	36,0	17	17	M16	24	444,9	444,9	R1590 650 00
	60 x 20	14	63	5,5	M16	36,0	17	17	M16	24	610,1	610,1	R1590 650 00
600	75 x 10	16	63	6,0	M20	42,0	19	19	M20	30	692,8	1142,4	R1590 660 00
	75 x 20	16	63	6,0	M20	42,0	19	19	M20	30	1040,4	1144,5	R1590 660 00

Per le sigle vedi capitolo "Abbreviazioni"

Forma 812, 822

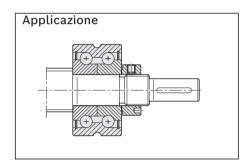
•												
PLSA	20 x 5R	FEM-E-S	00	1	0	T7	R	8227150	4127120	1250	1	1

_	l., · 1\	l s a:	1,										
Forma	Versione ¹⁾	Misure	(mm)									2111 000=3)	
		d v D		l D				lc	1.0	Cava per chiavetta	a secondo L	JIN 6885 ²	
		d ₀ x P	L _{jf}		L ₁	D ₂	L ₂	G ₁	LG ₁	b	ı	ľ	
				h6		h7				P9			
0.10	150		7.0	4.5		10						0.5	
812	150	20 x 5	70	15	23	12		M15x1	22	4	20	2,5	
8222)	153	20 x 5	97	15	50	12		M15x1	22	4	20	2,5	
	170	25 x 5	100	17	48	15		M17x1	22	5	25	3,0	
		25 x 10	100	17	48	15		M17x1	22	5	25	3,0	
	171	25 x 5	106	17	54	15	30	M17x1	22	5	25	3,0	
		25 x 10	106	17	54	15	30	M17x1	22	5	25	3,0	
	205	30 x 5	116	20	54	18	40	M20x1	22	6	28	3,5	
		30 x 10	116	20	54	18	40	M20x1	22	6	28	3,5	
	206	30 x 5	120	20	58	18	40	M20x1	22	6	28	3,5	
		30 x 10	120	20	58	18	40	M20x1	22	6	28	3,5	
	305	39 x 5	128	30	54	25	50	M30x1,5	24	8	36	4,0	
		39 x 10	128	30	54	25	50	M30x1,5	24	8	36	4,0	
	306	39 x 5	148	30	74	25	50	M30x1,5	24	8	36	4,0	
		39 x 10	148	30	74	25	50	M30x1,5	24	8	36	4,0	
	351	48 x 5	140	35	66	30	50	M35x1,5	24	8	36	4,0	
		48 x 10	140	35	66	30	50	M35x1,5	24	8	36	4,0	
		48 x 20	140	35	66	30	50	M35x1,5	24	8	36	4,0	
	352	48 x 5	156	35	82	30	50	M35x1,5	24	8	36	4,0	
		48 x 10	156	35	82	30	50	M35x1,5	24	8	36	4,0	
		48 x 20	156	35	82	30	50	M35x1,5	24	8	36	4,0	
	450	60 x 10	184	45	98	40	60	M45x1,5	26	12	50	5,0	
		60 x 20	184	45	98	40		M45x1,5	26	12	50	5,0	
	603	75 x 10	233	60	122	55	80	M60x2	31	16	63	6,0	
		75 x 20	233	60	122	55	80	M60x2	31	16	63	6,0	

¹⁾ Con la versione è possibile stabilire in modo univoco la correlazione tra le estremità delle viti e i gruppi cuscinetti di vincolo.

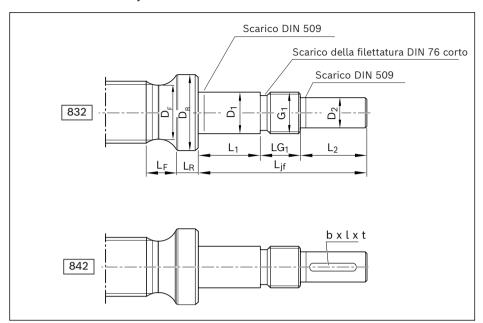
²⁾ Cava per chiavetta solo con forma 822

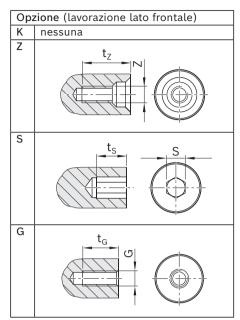
³⁾ In preparazione


Cuscinetti di vincolo per viti con estremità di forma 812, 822

Il gruppo cuscinetti di vincolo LAF, LAN, LAS è composto da:

- 1 cuscinetto
- 1 ghiera a tacche



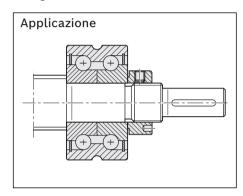


Loc									Mp (Nm)	Gruppo cuscinett	i di vincolo	
Ve	ersione ¹⁾		Foro di cen			_	Filett	ı i				1
		d ₀ x P	Z	t _z	S	t _S	G	t _G		LAF	LAN	LAS
										Numero di	Numero di	Numero di
										identificazione	identificazione	identificazione
		20 x 5	M4	10,0	4	4		8			R159A 115 01	-
		20 x 5	M4	10,0	4	4		8	, .		_	R159A 415 01
17		25 x 5	M5	12,5	4	4		9	15,9		3)	_
		25 x 10	M5	12,5	4	4	M6	9	25,7	3)	3)	-
17	71	25 x 5	M5	12,5	4	4	M6	9	15,9	_	-	R159A 417 02
		25 x 10	M5	12,5	4	4	M6	9	25,7	-	-	R159A 417 02
20	05	30 x 5	M6	16,0	5	5	M6	9	22,5	R159A 320 01	R159A 220 01	-
		30 x 10	M6	16,0	5	5	M6	9	38,5	R159A 320 01	R159A 220 01	-
20	06	30 x 5	M6	16,0	5	5	M6	9	22,5	-	-	R159A 420 02
		30 x 10	M6	16,0	5	5	M6	9	38,5	_	-	R159A 420 02
30	05	39 x 5	M10	22,0	8	8	M10	15	45,7	R1590 330 30	R1590 230 30	-
		39 x 10	M10	22,0	8	8	M10	15	85,5	R1590 330 30	R1590 230 30	-
30	06	39 x 5	M10	22,0	8	8	M10	15	45,7	-	-	R159A 430 01
		39 x 10	M10	22,0	8	8	M10	15	85,5	_	_	R159A 430 01
35	51	48 x 5	M10	22,0	10	10	M12	18	62,0	R159A 335 01	R159A 235 01	-
		48 x 10	M10	22,0	10	10	M12	18	119,0	R159A 335 01	R159A 235 01	_
		48 x 20	M10	22,0	10	10	M12	18	193,7	R159A 335 01	R159A 235 01	-
35	52	48 x 5	M10	22,0	10	10	M12	18	62,0	_	-	R159A 435 01
		48 x 10	M10	22,0	10	10	M12	18	119,0	_	-	R159A 435 01
		48 x 20	M10	22,0	10	10	M12	18	193,7	_	_	R159A 435 01
45	50	60 x 10	M16	36,0	12	12	M16	24	178,2	-	-	R159A 445 01
		60 x 20	M16	36,0	12	12	M16	24	325,1	-	-	R159A 445 01
60	03	75 x 10	M20	42,0	19	19	M20	30	296,7	-	-	R159A 460 01
		75 x 20	M20	42,0	19	19	M20	30	573,8	_	_	R159A 460 01

Forma 832, 842

PLSA	20 x 5R	FEM-E-S	00	1	0	T7	R	8427201	3127120	1250	1	1
I LOA	20 X 311	I LIVI L J					111	0722201	0122120	1230		

Forma	Versione ¹⁾	Misure	(mm)											la		1 5.11 00053)	
		d v D		n l		D		lc	1.0	D		_ n			vetta seco	ondo DIN 6885 ²⁾	
		d ₀ x P	L _{jf}	D ₁	L ₁	D ₂	L ₂	G ₁	LG ₁	D _R	L _R	D _F	L _F	b	ι	τ	
000			440	h6		h7	40	1100 1	0.0	07	_	100	440	P9		0.5	
832	201	20 x 5	116	20	54	18		M20x1	22	27	7	19,2	14,0	6	36	3,5	<u> </u>
842 ²⁾	251	20 x 5	157	25	87	20		M25x1,5	25	34	7	19,2	26,0	6	40	3,5	
	252	25 x 5	136	25	66	20	45		25	34	7	24,2	14,0	6	40	3,5	
	253	25 x 10	136	25	66	20	45	M25x1,5	25	34	7	24,2	14,0	6	40	3,5	
	254	25 x 5	157	25	87	20	45	. ,.	25	34	7	23,7	14,0	6	40	3,5	
	255	25 x 10	157	25	87	20	45	, , , ,	25	34	7	23,7	14,0	6	40	3,5	
	301	30 x 5	148	30	74	25	50	M30x1,5	24	40	10	29,2	17,0	8	40	4,0	
	302	30 x 10	148	30	74	25	50	M30x1,5	24	40	10	28,7	17,0	8	40	4,0	
	350	30 x 5	189	35	108	30	55	M35x1,5	26	45	10	29,2	28,0	8	45	4,0	
	351	30 x 10	189	35	108	30	55	M35x1,5	26	45	10	28,7	28,0	8	45	4,0	
	401	39 x 5	176	40	90	36	60	M40x1,5	26	54	12	38,1	24,5	10	50	5,0	
	402	39 x 10	176	40	90	36	60	M40x1,5	26	54	12	37,7	24,5	10	50	5,0	
	505	39 x 5	233	50	137	40	65	M50x1,5	31	62	12	38,1	32,0	12	50	5,0	
	506	39 x 10	233	50	137	40	65	M50x1,5	31	62	12	37,7	32,0	12	50	5,0	
	503	48 x 5	205	50	106	40	70	M50x1,5	29	62	12	47,2	22,0	12	50	5,0	
	504	48 x 10	205	50	106	40	70	M50x1,5	29	62	12	46,7	22,0	12	50	5,0	
	509	48 x 20	205	50	106	40	70	M50x1,5	29	62	12	45,6	22,0	12	50	5,0	
	650	48 x 5	310	65	178	60	100	M65x2	32	78	18	47,2	46,0	18	90	7,0	
	651	48 x 10	310	65	178	60	100	M65x2	32	78	18	46,7	46,0	18	90	7,0	
	656	48 x 20	310	65	178	60	100	M65x2	32	78	18	45,6	46,0	18	90	7,0	
	652	60 x 10	310	65	178	60	100	M65x2	32	78	18	58,7	39,0	18	90	7,0	
	653	60 x 20	310	65	178	60	100	M65x2	32	78	18	57,7	39,0	18	90	7,0	
	700	60 x 10	271	70	138	65	100	M70x2	33	90	20	58,7	50,0	18	90	7,0	
	701	60 x 20	271	70	138	65	100	M70x2	33	90	20	57,7	50,0	18	90	7,0	
	900	75 x 10	327	90	169	85	120	M90x2	38	108	25	73,7	59,0	22	100	9,0	
	901	75 x 20	327	90	169	85	120	M90x2	38	108	25	72,7	59,0	22	100	9,0	
	902	75 x 10	389	90	233	85	120	M90x2	36	108	25	73,7	59,0	22	100	9,0	
	903	75 x 20	389	90	233	85	120	M90x2	36	108	25	72,7	59,0	22	100	9,0	

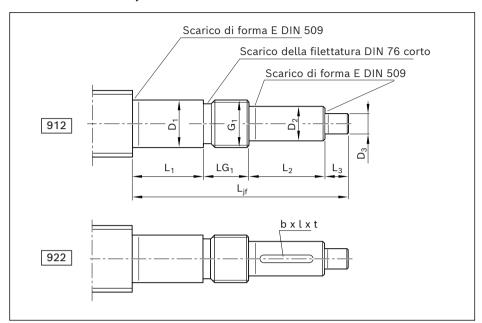

¹⁾ Con la versione è possibile stabilire in modo univoco la correlazione tra le estremità delle viti e i gruppi cuscinetti di vincolo.

²⁾ Cava per chiavetta solo con forma 842

Cuscinetti di vincolo per viti con estremità di forma 832, 842

Il gruppo cuscinetti di vincolo LAS, FEC-F è composto da:

- 1 cuscinetto
- 1 ghiera a tacche



							M _p (Nm)	Gruppo cuscinetti di vinco	lo
Versione ¹⁾	Foro di ce				Filettatur	1			l
	Z	t _Z	S	ts	G	t _G		LAS	FEC-F
									Numero di identificazione
201	M6	16	_		M6	9		R159A 420 01	-
251	M6	16			M8	12	29,2		R159B 425 01
252	M6	16	5	5	M8	12	,	R159A 425 01	_
253	M6	16	5	5	M8	12	59,9	R159A 425 01	[
254	M6	16	5	5	M8	12	33,0	_	R159B 425 01
255	M6	16	5	5	M8	12	59,9	_	R159B 425 01
301	M10	22	8	8	M10	15	45,3	R159A 430 01	<u> </u>
302	M10	22	8	8	M10	15	84,9	R159A 430 01	_
350	M10	22	10	10	M12	18	54,3	-	R159B 435 01
351	M10	22	10	10	M12	18	110,1	-	R159B 435 01
401	M12	28	12	12	M12	18	79,2	R159A 440 01	
402	M12	28	12	12	M12	18	154,2	R159A 440 01	-
505	M16	36	12	12	M16	24	91,1	-	R159B 450 01
506	M16	36	12	12	M16	24	175,4	-	R159B 450 01
503	M16	36	12	12	M16	24	110,7	R159A 450 01	<u> </u>
504	M16	36	12	12	M16	24	217,4	R159A 450 01	_
509	M16	36	12	12	M16	24	412,6	R159A 450 01	<u> </u>
650	M20	42	19	19	M24	36	132,6	_	R159B 465 01
651	M20	42	19	19	M24	36	256,6	_	R159B 465 01
656	M20	42	19	19	M24	36	465,4	_	R159B 465 01
652	M20	42	19	19	M24	36	385,3	_	R159B 465 01
653	M20	42	19	19	M24	36	721,6	-	R159B 465 01
700	M20	42	19	19	M24	36	373,5	R159A 470 01	_
701	M20	42	19	19	M24	36	701,3	R159A 470 01	_
900	M20	42	19	19	M30	45	596,7	R159A 490 01	_
901	M20	42	19	19	M30	45	1137,4	R159A 490 01	_
902	M20	42	19	19	M30	45	596,7	-	R159B 490 01
903	M20	42	19	19	M30	45	1137,4	-	R159B 490 01

Per le sigle vedi capitolo "Abbreviazioni"

Forma 912, 922

Opzione (lavorazione lato frontale)
K nessuna

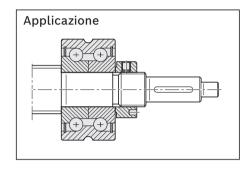
			1				l _					1 . !
PLSA	20 x 5R	FEM-E-S	$\cap \cap \cap$	1 1	\cap	T7	D .	0227151	2127120	1250	1	11
FLJA	20 X 3N	L EINI-E-2	00		0	1 /		3222131	3122120	1230		(1 /

Forma	Versione ¹⁾	Misure	(mm)									
Torma	Versione	Wilsuic	(11111)									
		d ₀ x P	L _{jf}	D ₁	L ₁	D_2	L ₂	D_3	L ₃	G ₁	LG ₁	
				h6		h7		h7				
912	150	20 x 5	85	15	23	12	25	6	15	M15X1	22	
9222)	151	20 x 5	112	15	50	12	25	6	15	M15x1	22	
	170	25 x 5	115	17	48	15	30	6	15	M17x1	22	
		25 x 10	115	17	48	15	30	6	15	M17x1	22	
	171	25 x 5	121	17	54	15	30	6	15	M17x1	22	
		25 x 10	121	17	54	15	30	6	15	M17x1	22	
	200	30 x 5	131	20	54	18	40	6	15	M20x1	22	
		30 x 10	131	20	54	18	40	6	15	M20x1	22	
	201	30 x 5	135	20	58	18	40	6	15	M20x1	22	
		30 x 10	135	20	58	18	40	6	15	M20x1	22	
	300	39 x 5	143	30	54	25	50	6	15	M30x1,5	24	
		39 x 10	143	30	54	25	50	6	15	M30x1,5	24	
	301	39 x 5	163	30	74	25	50	6	15	M30x1,5	24	
		39 x 10	163	30	74	25	50	6	15	M30x1,5	24	
	350	48 x 5	155	35	66	30	50	6	15	M35x1,5	24	
		48 x 10	155	35	66	30	50	6	15	M35x1,5	24	
		48 x 20	155	35	66	30	50	6	15	M35x1,5	24	
	351	48 x 5	171	35	82	30	50	6	15	M35x1,5	24	
		48 x 10	171	35	82	30	50	6	15	M35x1,5	24	
		48 x 20	171	35	82	30	50	6	15	M35x1,5	24	
	450	60 x 10	199	45	98	40	60	6	15	M45x1,5	26	
		60 x 20	199	45	98	40	60	6	15	M45x1,5	26	
	600	75 x 10	248	60	122	55	80	6	15	M60x2	31	
		75 x 20	248	60	122	55	80	6	15	M60x2	31	

¹⁾ Con la versione è possibile stabilire in modo univoco la correlazione tra le estremità delle viti e i gruppi cuscinetti di vincolo.

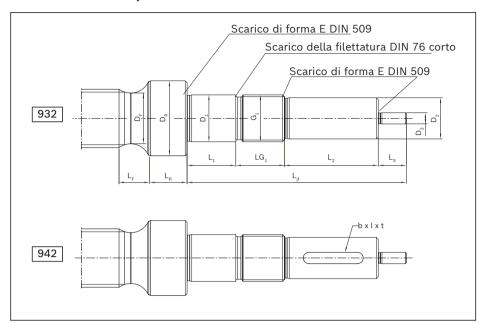
²⁾ Cava per chiavetta solo con forma 922

³⁾ In preparazione


Cuscinetti di vincolo per viti con estremità di forma 912, 922

Il gruppo cuscinetti di vincolo LAF, LAN, LAS è composto da:

- 1 cuscinetto
- 1 ghiera a tacche



					M _p (Nm)	Gruppo		
Versione ¹⁾	Misure	Cava per chi	iavetta secor	ndo		Unità supporto	Cuscinetti	
		DIN 6885 ²⁾				cuscinetti di vincolo		ı
	d ₀ x P	b	U	t		· ·		LAS
		P9					Numero di identificazione	Numero di identificazione
150	20 x 5	4	20	, -	,	R159A 015 01	R159A 115 01	
151	20 x 5	4	20	, -	1 ' 1	-	-	R159A 415 01
170	25 x 5	5	25	3,0	1		3)	
1!	25 x 10	5	25	3,0	25,7	3)	3)	
171	25 x 5	5	25				_	R159A417 02
<u></u> '	25 x 10	5	25	3,0	25,7	-		R159A417 02
200	30 x 5	6	28	. , .	,	R159A 320 01	R159A 220 01	
j ,	30 x 10	6	28	3,5	38,5	R159A 320 01	R159A 220 01	-
201	30 x 5	6	28	3,5	22,5	<u> </u>		R159A 420 02
1!	30 x 10	6	28	- , -				R159A 420 02
300	39 x 5	8	36	4,0	45,7	R1590 330 30	R1590 230 30	
<u></u> '	39 x 10	8	36	4,0	85,5	R1590 330 30	R1590 230 30	
301	39 x 5	8	36	4,0	45,7	_		R159A 430 01
<u></u> '	39 x 10	8	36	4,0	85,5			R159A 430 01
350	48 x 5	8	36	4,0	62,0	R159A 335 01	R159A 235 01	
1 '	48 x 10	8	36	4,0	,		R159A 235 01	-
<u></u> !	48 x 20	8	36	4,0	193,7	R159A 335 01	R159A 235 01	
351	48 x 5	8	36	4,0	62,0			R159A 435 01
1 !	48 x 10	8	36	4,0	,			R159A 435 01
<u></u> '	48 x 20	8	36	4,0				R159A 435 01
450	60 x 10	12	50	5,0	178,2			R159A 445 01
<u> </u>	60 x 20	12	50	- , -	,			R159A 445 01
600	75 x 10	16	63	6,0	296,7	-	_	R159A 460 01
j ,	75 x 20	16	63	6,0	573,8	-	-	R159A 460 01

Sigle, vedi capitolo "Abbreviazioni"

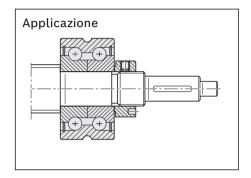
Forma 932, 942

Opzione (lavorazione lato frontale)

K nessuna

PLSA	20 x 5R	FEM-E-S	nη	1	0 T7	B	9/127251	/127120	1250	1	1
I LOA	20 X 311	ILIVILO	00		0 11	11	J4222J I	4122120	1230		

Forma	Versione ¹⁾	Grandezza	(mm)												ı	
		d ₀ x P	L _{jf}	D ₁	L ₁	D ₂	L ₂	D ₃	L ₃	G ₁	LG ₁	D _R	L _R	D_F	L _F	
932	201	20 x 5	131	20	54	18	40	6	15	M20x1	22	27	7	19,2	14,0	
9422)	251	20 x 5	172	25	87	20	45	6	15	M25x1,5	25	34	7	19,2	26,0	
	252	25 x 5	151	25	66	20	45	6	15	M25x1,5	25	34	7	24,2	14,0	
	253	25 x 10	151	25	66	20	45	6	15	M25x1,5	25	34	7	23,7	14,0	
	254	25 x 5	172	25	87	20	45	6	15	M25x1,5	25	34	7	24,2	14,0	
	255	25 x 10	172	25	87	20	45	6	15	M25x1,5	25	34	7	23,7	14,0	
	301	30 x 5	163	30	74	25	50	6	15	M30x1,5	24	40	10	29,2	17,0	
	302	30 x 10	163	30	74	25	50	6	15	M30x1,5	24	40	10	28,7	17,0	
	350	30 x 5	204	35	108	30	55	6	15	M35x1,5	26	45	10	29,2	28,0	
	351	30 x 10	204	35	108	30	55	6	15	M35x1,5	26	45	10	28,7	28,0	
	401	39 x 5	191	40	90	36	60	6	15	M40x1,5	26	54	12	38,1	24,5	
	402	39 x 10	191	40	90	36	60	6	15	M40x1,5	26	54	12	37,7	24,5	
	505	39 x 5	248	50	137	40	65	6	15	M50x1,5	31	62	12	38,1	32,0	
	506	39 x 10	248	50	137	40	65	6	15	M50x1,5	31	62	12	37,7	32,0	
	503	48 x 5	220	50	106	40	70	6	15	M50x1,5	29	62	12	47,2	22,0	
	504	48 x 10	220	50	106	40	70	6	15	M50x1,5	29	62	12	46,7	22,0	
	507	48 x 20	220	50	106	40	70	6	15	M50x1,5	29	62	12	45,6	22,0	
	650	48 x 5	325	65	178	60	100	6	15	M65x2	32	78	18	47,2	46,0	
	651	48 x 10	325	65	178	60	100	6	15	M65x2	32	78	18	46,7	46,0	
	654	48 x 20	325	65	178	60	100	6	15	M65x2	32	78	18	45,6	46,0	
	700	60 x 10	286	70	138	65	100	6		M70x2	33	90	20	58,7	50,0	
	701	60 x 20	286	70	138	65	100	6	15	M70x2	33	90	20	57,7	50,0	
	652	60 x 10	325	65	178	60	100	6	15		32	78	18	58,7	39,0	
	653	60 x 20	325	65	178	60	100	6	15	M65x2	32	78	18	57,7	39,0	
	900	75 x 10	342	90	169	85	120	6	15	M90x2	38	108	25	73,7	59,0	
	901	75 x 20	342	90	169	85	120	6	15	M90x2	38	108	25	72,7	59,0	
	902	75 x 10	404	90	233	85	120	6	15	M90x2	36	108	25	73,7	59,0	
	903	75 x 20	404	90	233	85	120	6	15	M90x2	36	108	25	72,7	59,0	


¹⁾ Con la versione è possibile stabilire in modo univoco la correlazione tra le estremità delle viti e i gruppi cuscinetti di vincolo.

²⁾ Cava per chiavetta solo con forma 942

Cuscinetti di vincolo per viti con estremità di forma 932, 942

Il gruppo cuscinetti di vincolo FEC-F, LAS è composto da:

- 1 cuscinetto
- 1 ghiera a tacche

				M _p (Nm)	Gruppo cuscinetti di vincolo	
Versione ¹⁾	Cava per chiavet	tta secondo DIN ²⁾	6885 ²⁾			
	b	ι	t		LAS	FEC-F
	P9				Numero di identificazione	Numero di identificazione
201	6	36	3,5	22,7	R159A 420 01	-
251	6	40	3,5	29,2	-	R159B 425 01
252	6	40	3,5	33,0	R159A 425 01	-
253	6	40	3,5	59,9	R159A 425 01	-
254	6	40	3,5	33,0	_	R159B 425 01
255	6	40	3,5	59,9	_	R159B 425 01
301	8	40	4,0	45,3	R159A 430 01	-
302	8	40	4,0	84,9	R159A 430 01	-
350	8	45	4,0	54,3	_	R159B 435 01
351	8	45	4,0	110,1	-	R159B 435 01
401	10	50	5,0	79,2	R159A 440 01	-
402	10	50	5,0	154,2	R159A 440 01	-
505	12	50	5,0	91,1	-	R159B 450 01
506	12	50	5,0	175,4	-	R159B 450 01
503	12	50	5,0	110,7	R159A 450 01	-
504	12	50	5,0	217,4	R159A 450 01	-
507	12	50	5,0	412,6	R159A 450 01	-
650	18	90	7,0	132,6	-	R159B 465 01
651	18	90	7,0	256,6	-	R159B 465 01
654	18	90	7,0	488,4	-	R159B 465 01
700	18	90	7,0	385,3	R159A 470 01	-
701	18	90	7,0	721,6	R159A 470 01	_
652	18	90	7,0	373,5	-	R159B 465 01
653	18	90	7,0	701,3	-	R159B 465 01
900	22	100	9,0	596,7	R159A 49001	-
901	22	100	9,0	1137,4	R159A 49001	-
902	22	100	9,0	596,7	-	R159B 490 01
903	22	100	9.0	1137.4	_	R159B 490 01

Per le sigle vedi capitolo "Abbreviazioni"

Panoramica

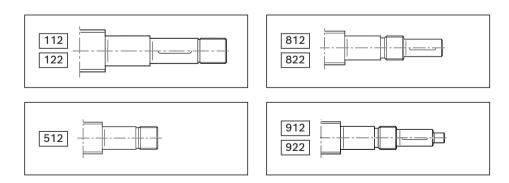
Rexroth offre un'ampia gamma di accessori per viti a rulli planetari. Sono a disposizione ad es. cuscinetti, ghiere a tacche. Durante il dimensionamento occorre tenere conto di un rapporto ragionevole tra i fattori di carico di cuscinetto e la vite a rulli planetari.

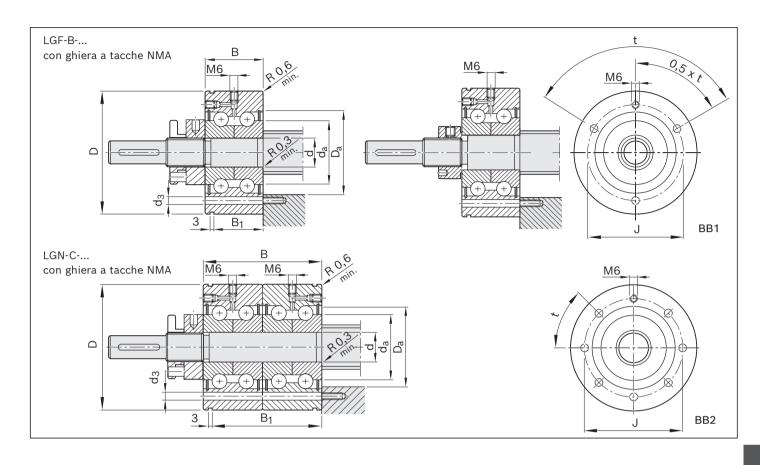
Ulteriori informazioni sono riportate nel presente capitolo.

Gruppo cuscinetti di vincolo LAF

Vincolatura assiale con cuscinetto a doppia corona di sfere a contatto obliquo LGF Sopporta i carichi assiali nei due sensi, fissaggio con viti, tipo LGF-B-...
Sopporta i carichi assiali nei due sensi, fissaggio con viti, tipo LGF-C-...

Il gruppo cuscinetti di vincolo è composto da:


- cuscinetto a doppia corona di sfere a contatto obliquo LGF (non disponibile singolarmente)
- ghiera a tacche NMA...


È obbligatoria una progettazione tecnica a parte per il rilevamento dei valori limite per tutti gli accessori (ad es. unità supporto cuscinetti di vincolo, gruppo cuscinetti di vincolo, etc.).

d ₀ x P	LAF	LGF	NMA		Massa	С	Co	M_RL	R _{fb}	R _{kl}	n _G
	Numero di	Sigle	Sigla	Numero di	completo						
	identificazione			identificazione	m (kg)	(N)	(N)	(Nm)	(N/µm)	(Nm/mrad)	(min ⁻¹)
20 x 5	R159A 015 01	LGF-B-1560	NMA 15x1	R3446 020 04	0,49	17 900	28 000	0,20	400	65	3 500
30 x 5/10	R159A 320 01	LGF-C-2068	NMA 20x1	R3446 015 04	1,35	42 000	94 000	0,45	1 150	320	3 000
39 x 5/10	R1590 330 30	LGF-C-3080	NMA 30x1,5	R3446 016 04	1,76	47 500	127 000	0,75	1 500	620	2 200
48 x 5/10/20	R159A 335 01	LGF-C-3590	NMA 35x1,5	R3446 012 04	2,49	66 000	177 000	0,90	1 600	900	2 000

Sigle, vedi capitolo "Abbreviazioni"

d ₀ x P	(mm)												
	d	D	В	B ₁	J		D_a		d_{a}	Numero	d ₃	t	Disposizione
						min	max	min	max		(mm)	(°)	dei fori
20 x 5	15 -0,010	60 -0,013	25 -0,25	17	46	32	35	20	31	3	6,8	120	BB1
30 x 5/10	20 -0,005	68 _{-0,010}	56 _{-0,50}	47	53	40	43	25	39	7	6,8	45	BB2
39 x 5/10	30 -0,005	80 -0,010	56 -0,50	47	63	50	53	40	49	11	6,8	30	BB2
48 x 5/10/20	35 -0,005	90 -0,010	68 -0,50	59	75	59	62	45	58	7	8,8	45	BB2

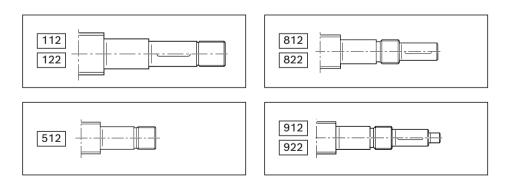
Gruppo cuscinetti di vincolo LAN

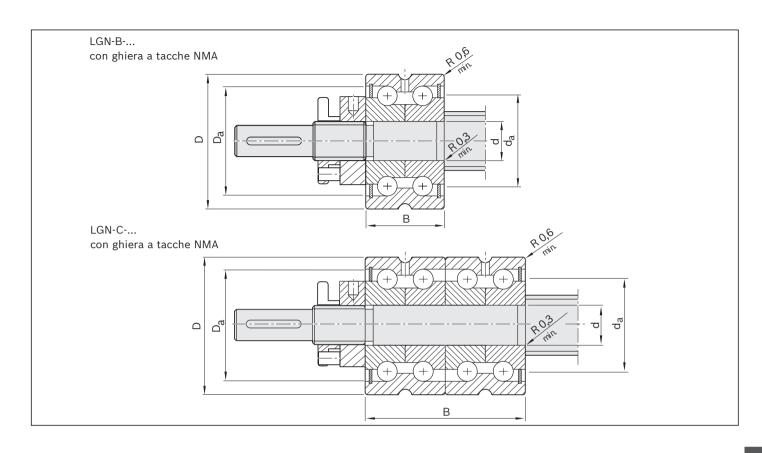
Vincolatura assiale con cuscinetto a doppia corona di sfere a contatto obliquo LGN

Supporta carichi assiali nei due sensi serie LGN-B-...

Supporta carichi assiali nei due sensi, in coppia, Serie LGN-C-...

Il gruppo cuscinetti di vincolo è composto da:


- cuscinetto a doppia corona di sfere a contatto obliquo LGN (non disponibile singolarmente)
- ghiera a tacche NMA...


È obbligatoria una progettazione tecnica a parte per il rilevamento dei valori limite per tutti gli accessori (ad es. unità supporto cuscinetti di vincolo, gruppo cuscinetti di vincolo, etc.).

d ₀ x P	LAN	LGN	NMA		Massa	С	C ₀	M_RL	R_{fb}	R_{kl}	n_{G}
	Numero di	Sigle	Sigla	Numero di	completo						
	identificazione			identificazione	m (kg)	(N)	(N)	(Nm)	(N/µm)	(Nm/mrad)	(min ⁻¹)
20 x 5	R159A 115 01	LGN-B-1545	NMA 15x1	R3446 020 04	0,27	17 900	28 000	0,20	400	65	3 500
30 x 5/10	R159A 220 01	LGN-C-2052	NMA 20x1	R3446 015 04	0,75	42 000	94 000	0,45	1 150	320	3 000
39 x 5/10	R1590 230 30	LGN-C-3062	NMA 30x1,5	R3446 016 04	0,98	47 500	127 000	0,75	1 500	620	2 200
48 x 5/10/20	R159A 235 01	LGN-C-3572	NMA 35x1,5	R3446 012 04	1,25	66 000	177 000	0,90	1 600	900	2 000

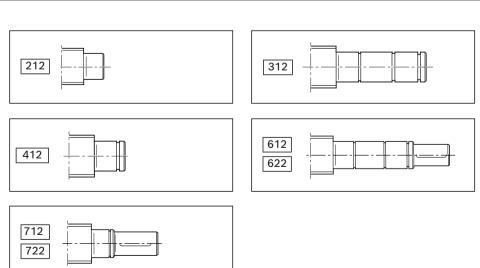
Sigle, vedi capitolo "Abbreviazioni"

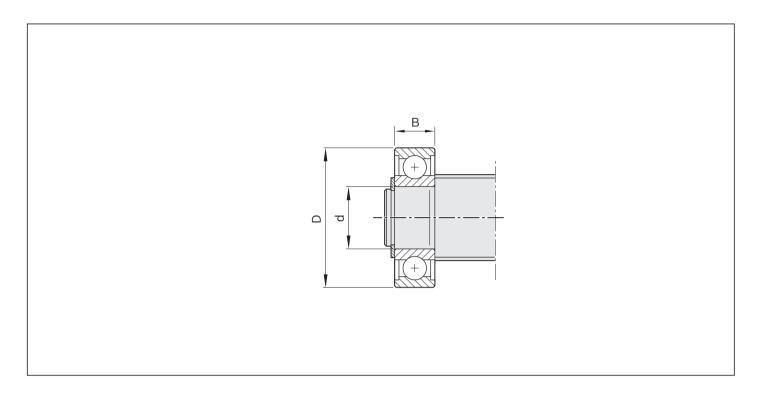
d ₀ x P	(mm)						
	d	D	В		D_a		d_a
				min	max	min	max
20 x 5	15 -0,010	45 -0,01	25 _{-0,25}	32	35	20	31
30 x 5/10	20 -0,005	52 _{-0,01}	56 _{-0,50}	40	43	25	39
39 x 5/10	30 -0,005	62 _{-0,01}	56 _{-0,50}	50	53	40	49
48 x 5/10/20	35 -0,005	72 -0,01	68 -0,50	59	62	45	58

Gruppo cuscinetti di vincolo LAD

Vincolatura libera assialmente con cuscinetto radiale rigido a sfere

Il gruppo cuscinetti di vincolo è composto da:


- cuscinetti radiali rigidi a sfere DIN 625....2RS
- anello di sicurezza DIN 471 (2 pezzi)


È obbligatoria una progettazione tecnica a parte per il rilevamento dei valori limite per tutti gli accessori (ad es. unità supporto cuscinetti di vincolo, gruppo cuscinetti di vincolo, etc.).

d ₀ x P	LAD	Singoli compone		1		Massa	С	C ₀
		Cuscinetto radia	le rigido a sfere DIN 625	Anello	di sicurezza DIN 471	completa		
	Numero di	Numero di	Sigle	Sigla	Numero di	m (kg)	(N)	(N)
	identificazione	identificazione			identificazione			
20 x 5	R1590 612 00	6201.2RS	R3414 042 00	12x1	R3410 712 00	0,035	6 950	2 650
	R1590 615 00	6202.2RS	R3414 074 00	15x1	R3410 748 00	0,043	7 800	3 250
25 x 5/10	R1590 617 00	6203.2RS	R3414 050 00	17x1	R3410 749 00	0,064	9 500	4 150
30 x 5/10	R1590 620 00	6204.2RS	R3414 038 00	20x1,2	R3410 735 00	0,106	12 700	5 700
	R1590 625 00	6205.2RS	R3414 063 00	25x1,2	R3410 750 00	0,125	14 300	6 950
39 x 5/10	R1590 630 00	6206.2RS	R3414 051 00	30x1,5	R3410 724 00	0,195	19 300	9 800
48 x 5/10/20	R1590 635 00	6207.2RS	R3414 075 00	35x1,5	R3410 725 00	0,288	25 500	13 200
60 x 10/20	R1590 650 00	6210.2RS	R3414 077 00	50x2	R3410 727 00	0,453	36 500	20 800
75 x 10/20	R1590 660 00	6212.2RS	R3414 078 00	60x2	R3410 764 00	0,783	52 000	31 000

Sigle, vedi capitolo "Abbreviazioni"

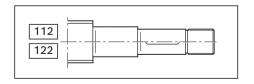
d ₀ x P	(mm)		
	d	D	В
20 x 5	12	32	10
	15	35	11
25 x 5/10	17	40	12
30 x 5/10	20	47	14
	25	52	15
39 x 5/10	30	62	16
48 x 5/10/20	35	72	17
60 x 10/20	50	90	20
75 x 10/20	60	110	22

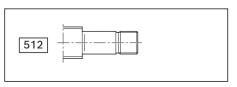
Gruppo cuscinetti di vincolo LAS

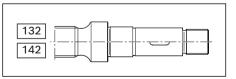
Vincolatura assiale con cuscinetto a doppia corona di sfere a contatto obliquo LGS Nei due sensi, serie LAS-E

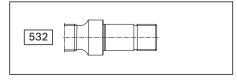
Il gruppo cuscinetti di vincolo è composto da:

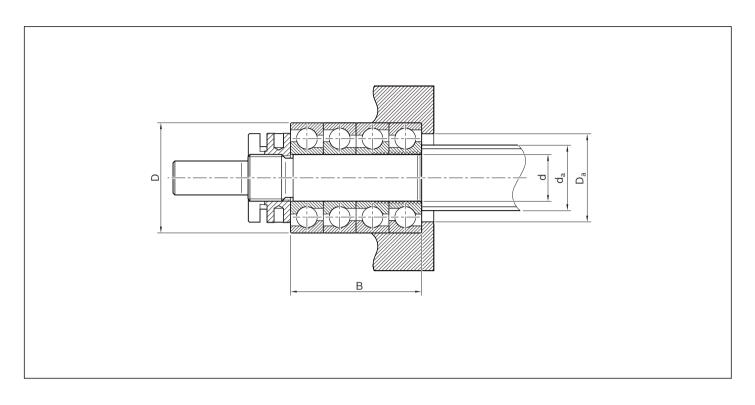
- cuscinetto a sfere a contatto obliquo LGS secondo DIN 628 (non disponibile singolarmente)
- ghiera a tacche NMA...

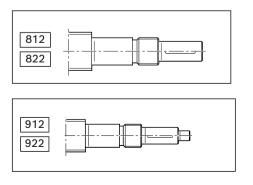

È obbligatoria una progettazione tecnica a parte per il rilevamento dei valori limite per tutti gli accessori (ad es. unità supporto cuscinetti di vincolo, gruppo cuscinetti di vincolo, etc.).

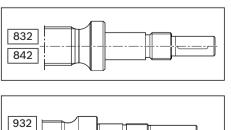



d ₀ x P	LAS	LGS	NMA		Massa completa	С	C ₀	$n_G^{1)}$
	Numero di	Sigle	Sigla	Numero di	m			
	identificazione			identificazione	(kg)	(kN)	(kN)	(min ⁻¹)
20 x 5	R159A 415 01	LGS-E-1542	NMA 15x1	R3446 020 04	0,39	37,1	51,5	9 000
	R159A 420 01	LGS-E-2047	NMA 20x1	R3446 015 04	0,57	39,9	63,8	8 550
25 x 5/10	R159A 417 02	LGS-E-1747	NMA 17x1	R3446 014 04	0,50	45,3	63,8	9 500
	R159A 425 01	LGS-E-2562	NMA 25x1,5	R3446 011 04	1,10	74,2	119,2	7 500
30 x 5/10	R159A 420 02	LGS-E-2052	NMA 20x1	R3446 015 04	0,73	54,2	80,0	8 100
	R159A 430 01	LGS-E-3072	NMA 30x1,5	R3446 016 04	1,68	98,3	163,1	5 850
39 x 5/10	R159A 430 01	LGS-E-3072	NMA 30x1,5	R3446 016 04	1,68	98,3	163,1	5 850
	R159A 440 01	LGS-E-4090	NMA 40x1,5	R3446 016 08	2,74	140,8	257,7	4 500
48 x 5/10/20	R159A 435 01	LGS-E-3580	NMA 35x1,5	R3446 012 04	2,19	109,4	188,4	4 950
	R159A 450 01	LGS-E-50110	NMA 50x1,5	R3446 019 04	4,95	208,8	392,3	3 600
60 x 10/20	R159A 445 01	LGS-E-45100	NMA 45x1,5	R9130 342 15	1,70	172,4	319,2	4 050
	R159A 470 01	LGS-E-70150	NMA 70x2	R9130 342 17	10,99	339,2	692,3	2 520
75 x 10/20	R159A 460 01	LGS-E-60130	NMA 60x2	R9130 342 16	7,49	272,5	534,6	3 015
	R159A 490 01	LGS-E-90190	NMA 90x2	R9163 113 51	21,45	473,1	1123,0	2 025


¹⁾ Valori indicativi con carico molto piccolo, buona dissipazione di calore e grassi lubrificanti indicati a bassa consistenza


Per le sigle vedi capitolo "Abbreviazioni"

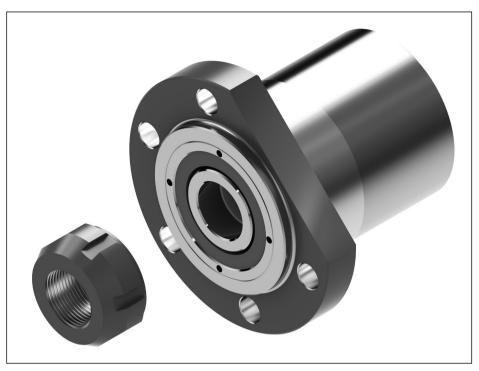




d ₀ x P	(mm)						
	d	D	В		D_a		d_a
				min	max	min	max
20 x 5	15 -0,008	42 -0,011	52	33,0	36,0	_	-
	20 -0,010	47 _{-0,011}	56	36,0	41,0	25,6	35,0
25 x 5/10	17 -0,008	47 _{-0,008}	56	36,2	41,1	22,6	35,2
	25 -0,010	62 -0,013	68	48,1	55,0	32,0	47,1
30 x 5/10	20 -0,010	52 -0,013	60	40,0	45,0	-	-
	30 _{-0,010}	72 -0,013	76	56,5	65,0	37,0	55,5
39 x 5/10	30 _{-0,010}	72 -0,013	76	56,5	65,0	-	-
	40 -0,012	90 -0,015	92	72,0	81,0	49,0	71,0
48 x 5/10/20	35 -0,012	80 -0,013	84	63,0	71,0	-	-
	50 -0,012	110 _{-0,015}	108	89,0	100,0	61,0	88,0
60 x 10/20	45 -0,012	100 -0,015	100	81,0	91,0	-	-
	70 -0,015	150 _{-0,018}	140	121,0	138,0	82,0	119,0
75 x 10/20	60 -0,015	130 -0,018		106,0	118,0	-	-
	90 -0,020	190 -0,030	172	153,0	176,0	104,0	150,0

942

Gruppo cuscinetti di vincolo FEC-F

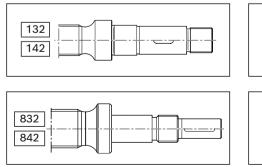

Vincolatura assiale con cuscinetto a doppia corona di sfere a contatto obliquo LGS

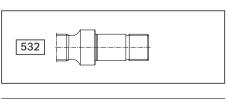
Il gruppo cuscinetti di vincolo è composto da:

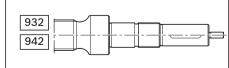
- supporto di precisione flangiato in acciaio
- cuscinetto a doppia corona di sfere a contatto obliquo LGS
- ghiera a tacche NMB

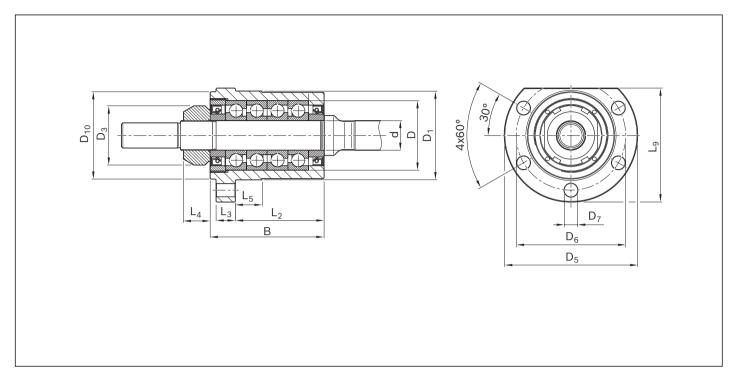
La ghiera a tacche viene fornita a parte

È obbligatoria una progettazione tecnica a parte per il rilevamento dei valori limite per tutti gli accessori (ad es. unità supporto cuscinetti di vincolo, gruppo cuscinetti di vincolo, etc.).

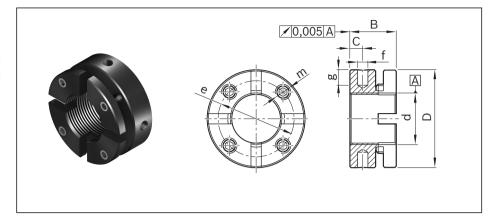

d ₀ x P	FEC-F	LGS	NMB			Massa	С	C ₀	$M_{RL}^{2)}$	R _{fb}	R_{kL}	n _G ³⁾
	Numero di	Sigla	Sigla	M _A ¹⁾	M _{AG}	completo						
	identificazione			(Nm)	(Nm)	m (kg)	(kN)	(kN)	(Nm)	(N/µm)	(Nm/mrad)	(min ⁻¹)
20 x 5	R159B 425 01	LGS-E-2562	NMB 25x1,5	38	8	3,5	74,2	119,2	1,10	450	160	6 900
25 x 5/10	R159B 425 01	LGS-E-2562	NMB 25x1,5	38	8	3,5	74,2	119,2	1,10	450	160	6 900
30 x 5/10	R159B 435 01	LGS-E-3580	NMB 35x1,5	65	8	6,0	109,4	188,4	1,10	600	715	4 950
39 x 5/10	R159B 450 01	LGS-E-50110	NMB 50x1,5	110	18	11,8	208,8	392,3	1,50	750	1 000	3 600
48 x 5/10/20	R159B 465 01	LGS-E-65140	NMB 65x2	200	18	27,0	305,3	615,4	2,00	1 250	3 200	2 835
60 x 10/20	R159B 465 01	LGS-E-65140	NMB 65x2	200	18	27,0	305,3	615,4	2,00	1 250	3 200	2 835
75 x 10/20	R159B 490 01	LGS-E-90190	NMB 90x2	300	35	53,4	473,1	1 123,0	2,30	1 500	7 500	2 025


- 1) Montaggio con chiave a gancio (DIN 1810)
- 2) Misurato con 50 min⁻¹
- 3) Valori indicativi con carico molto piccolo, buona dissipazione di calore e grassi lubrificanti indicati a bassa consistenza


Sigle vedi "Abbreviazioni" a pagina 207.


I valori sono validi per disposizione dei cuscinetti 2 + 2.

È possibile una disposizione dei cuscinetti 3 + 1 o 1 + 3. Vogliate contattarci.



d ₀ x P	(mm)													
	d	D	В	L2	L3	L4	L5	L9	D1	D3	D5	D6	D7	D10

20 x 5	25 -0,010	62 -0,013	89	68,0	16	20	36,0	104,0	80	44	120	100	11,0	80
25 x 5/10	25 -0,010	62 -0,013	89	68,0	16	20	36,0	104,0	80	44	120	100	11,0	80
30 x 5/10	35 -0,012	80 -0,013	110	82,0	20	22	47,0	124,0	100	54	140	120	13,0	99
39 x 5/10	50 -0,012	110 -0,015	140	98,5	25	25	58,5	152,5	130	75	171	152	13,0	130
48 x 5/10/20	65 -0,015	140 -0,018	180	133,5	30	28	53,5	199,5	170	95	225	198	17,5	170
60 x 10/20	65 -0,015	140 -0,018	180	133,5	30	28	53,5	199,5	170	95	225	198	17,5	170
75 x 10/20	90 -0,020	190 -0,018	235	179,0	35	32	99,0	257,5	220	125	285	252	22,0	219

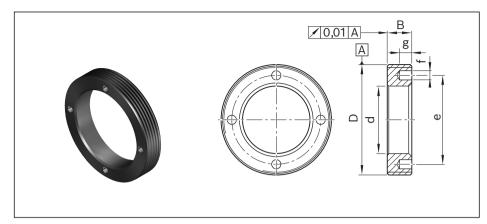
Ghiere a tacche NMA, per vincolatura assiale

Ghiera a tacche NMA

- Per forti vibrazioni
- Da NMA 15 a NMA 40 con 4 segmenti
- Da NMA 45 a NMA 90 con 6 segmenti

Sigle	Numero di identificazione	(mm)								M_A	F_{aB}	M_{AG}	Massa
		d	D	В	С	m	e	f	g	(Nm)	(kN)	(Nm)	m (g)
NMA 15x1	R3446 020 04	M15x1	30	18	5	M5	24	4	5	10	100	3	60
NMA 17x1	R3446 014 04	M17x1	32	18	5	M5	26	4	5	15	120	3	70
NMA 20x1	R3446 015 04	M20x1	38	18	5	M6	31	4	6	18	145	5	130
NMA 25x1,5	R3446 011 04	M25x1,5	45	20	6	M6	38	5	6	25	205	5	160
NMA 30x1,5	R3446 016 04	M30x1,5	52	20	6	M6	45	5	7	32	250	5	200
NMA 35x1,5	R3446 012 04	M35x1,5	58	20	6	M6	51	5	7	40	280	5	230
NMA 40x1,5	R3446 018 04	M40x1,5	65	22	6	M6	58	6	8	55	350	5	300
NMA 45x1,5	R9130 342 15	M45x1,5	70	22	6	M6	63	6	8	65	360	5	340
NMA 50x1,5	R3446 019 04	M50x1,5	75	25	8	M6	68	6	8	85	450	5	430
NMA 60x2	R9130 342 16	M60x2,0	90	26	8	M8	80	6	8	100	550	15	650
NMA 70x2	R9130 342 17	M70x2,0	100	28	9	M8	90	8	10	130	650	15	790
NMA 90x2	R9163 113 51	M90x2,0	130	32	13	M10	118	8	10	200	900	20	1 530

Sigle, vedi capitolo "Abbreviazioni"


Anello filettato GWR

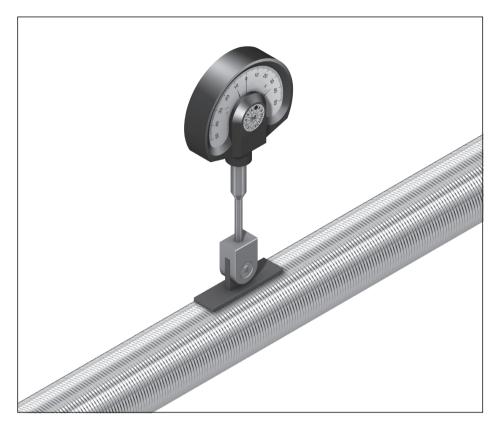
- Per cuscinetti di vincolo assiale a doppia corona di sfere a contatto obliquo LGN

Attenzione:

assicurare il prodotto con frenafiletto (ad es. Loctite 638) per evitare che si allenti

MA = Coppia di serraggio anello filettato

Sigle	Numero di identificazione	(mm)						M _A	Massa
		D	d	В	е	f	g	(Nm)	m (g)
GWR 18x1	R1507 040 33	M18x1	8,5	8	12,5	2,5	3	6	10,0
GWR 23x1	R1507 240 35	M23x1	13,0	8	18,0	2,5	3	8	15,0
GWR 26x1,5	R1507 240 22	M26x1,5	16,5	8	20,5	2,5	3	10	16,5
GWR 30x1,5	R1507 340 34	M30x1,5	17,0	8	23,0	3,0	4	20	29,0
GWR 36x1,5	R1507 040 23	M36x1,5	22,0	8	29,0	3,0	4	25	35,0
GWR 40x1,5	R1507 140 03	M40x1,5	25,0	8	33,0	3,0	4	28	39,5
GWR 45x1,5	R1507 240 04	M45x1,5	28,0	8	38,0	3,0	4	30	55,0
GWR 50x1,5	R1507 240 25	M50x1,5	31,0	10	40,0	4,0	5	45	86,0
GWR 55x1,5	R1507 340 05	M55x1,5	36,0	10	46,0	4,0	5	50	96,0
GWR 58x1,5	R1507 440 32	M58x1,5	43,0	10	50,0	4,0	5	58	84,0
GWR 60x1	R1507 440 28	M60x1	43,0	10	51,0	4,0	5	60	97,0
GWR 62x1,5	R1507 440 29	M62x1,5	43,0	12	53,0	5,0	6	60	127,0
GWR 65x1,5	R1507 440 26	M65x1,5	47,0	12	55,0	4,0	5	70	136,0
GWR 70x1,5	R1507 440 06	M70x1,5	42,0	12	58,0	4,0	5	75	216,0
GWR 78x2	R1507 567 27	M78x2	54,0	15	67,0	6,0	7	90	286,0
GWR 92x2	R1507 640 09	M92x2	65,0	16	82,0	6,0	7	125	385,0
GWR 95x2	R1507 667 28	M95x2	68,0	16	82,0	6,0	7	130	425,0
GWR 112x2	R1507 740 11	M112x2	82,0	18	100,0	8,0	8	175	596,0
GWR 115x2	R1507 767 29	M115x2	85,0	18	100,0	8,0	8	200	664,0


Pattini di misura

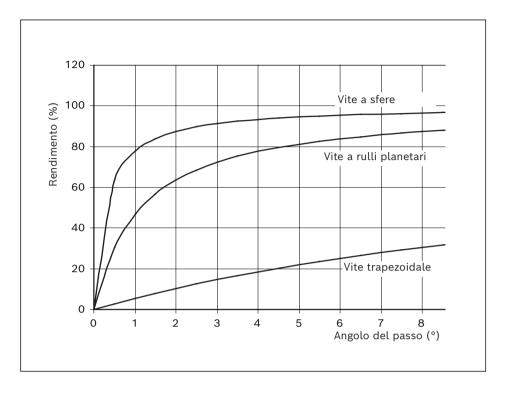
Allineamento della vite a rulli planetari nella macchina

Per agevolare l'allineamento della vite a rulli planetari, Rexroth mette a disposizione una sonda con superficie ribaltabile sulla vite.

Sono disponibili due pattini di misura di lunghezze differenti, utilizzati in funzione del passo della vite:

- n° di identificazione R3305 131 19: lunghezza 33 mm
- n° di identificazione R3305 131 21: lunghezza 50 mm

L'indicatore a quadrante non è compreso nella fornitura della vite a rulli planetari


Note tecniche

Con il rendimento viene determinata la coppia necessaria per la conversione del moto rotatorio in moto rettilineo.

Per via dell'elevato rendimento, le viti a rulli planetari non sono autobloccanti.

Avvertenze per la sicurezza

Al momento del montaggio il cliente deve verificare se è necessario un dispositivo anticaduta apposito. Vogliate contattarci.

Vantaggi rispetto alla vite trapezoidale

- Il rendimento meccanico, corrispondente a max. il 50% per la vite trapezoidale, raggiunge per la vite a rulli planetari il 90% e per la vite a sfere il 98%.
- Aumentata durata di vita, grazie a funzionamento pressoché resistente all'usura.
- Richiesta minore potenza motrice
- Nessun effetto stick-slip
- Posizionamento più preciso
- Velocità di traslazione aumentata
- Minor sviluppo di calore

Criteri di scelta per viti a rulli planetari (PLSA) (estratto)

Per la progettazione di una vite a rulli planetari sono importanti i fattori seguenti:

- esigenza di precisione (errore del passo)
- carico
- durata di vita
- velocità critica
- carico di punta

- rigidezza/assenza di gioco
- fattore di velocità (max. velocità lineare ammessa)

Attenzione

Forze radiali e forze radiali conseguenti a errori di eccentricità devono essere evitate perché influenzano negativamente la durata e la funzionalità della vite a rulli planetari.

In caso di particolari condizioni di impiego, vi preghiamo di interpellarci.

Per realizzare soluzioni costruttivamente ed economicamente ottimali, considerare i punti seguenti:

- Per il calcolo della durata vanno considerati i carichi medi e le velocità medie e non i valori massimi.
- Per poter offrire la soluzione ottimale, consigliamo di allegare alla richiesta d'offerta un disegno d'insieme dell'applicazione corredato dalle specifiche tecniche.

Fattore di carico statico C₀

Con fattore di carico statico si intende un carico agente sulla vite in direzione assiale capace di determinare una deformazione permanente pari a 0,0001 volte il diametro del corpo volvente.

Fattore di carico dinamico C

Il fattore di carico dinamico è il carico agente sull'asse della vite, con direzione assiale, di grandezza e direzione costanti e al di sotto del quale il 90% di un numero sufficientemente elevato di viti a rulli planetari reciprocamente uguali raggiunge una durata di vita nominale di 1 milione di giri (è un dato puramente teorico).

Fattore di correzione delle classi di tolleranza

In funzione della classe di tolleranza della vite il fattore di carico statico C_0 e il fattore di carico dinamico C devono essere moltiplicati per i fattori di correzione fac.

Classe di tolleranza T	5	7	9
f _{ac}	1	0,9	0,8

Durata di vita

La durata di vita nominale viene espressa dal numero di rotazioni (o di ore di esercizio a numero di giri invariato) che viene raggiunto oppure superato dal 90% di un numero sufficientemente elevato di viti a rulli planetari reciprocamente uguali, prima che si manifesti il primo segno di affaticamento del materiale. La durata di vita nominale viene indicata con L o Lh, a seconda che il suo valore venga espresso in rotazioni (giri) o in ore. Il calcolo della durata di vita si basa su condizioni di montaggio e ambientali ottimali. Ad esempio, un peggioramento dello stato di lubrificazione a seguito del contatto con fluidi di processo, può ridurre la durata di vita.

Velocità critica e carico di punta

La velocità critica e il carico di punta possono essere controllati sulla base del diagramma corrispondente. Per calcoli precisi: formula 12 15 vedi capitolo Calcoli

Fattore di velocità $d_0 \cdot n$

Grazie alla loro costruzione, le viti a rulli planetari Rexroth possono essere azionate a numeri di giri molto elevati, al punto da raggiungere fattori di velocità fino a 150 000. Il fattore di velocità può anche essere superato per breve tempo, vogliate interpellarci.

 $d_0 \cdot n \leq 150000$

 d_0 = diametro nominale (mm) (min^{-1}) = numero di giri

L'indicazione della velocità lineare teorica massima possibile v_{max} (m/min) è riportata alla pagina della chiocciola corrispondente. Le velocità effettivamente raggiungibili dipendono, tra gli altri, dal precarico e dal tempo d'inserzione. Sono limitate, in linea di massima, dalla velocità critica. (Vedi capitolo Calcoli)

Materiali e durezze

Le viti a rulli planetari sono realizzate in acciaio bonificato di alta qualità, acciaio per cuscinetti a sfere o acciaio da cementazione. La durezza delle viti e delle chiocciole in corrispondenza delle piste è HRC 58 (min.). Le estremità delle viti non sono temprate.

Note tecniche

Protezione

Le viti a rulli planetari richiedono una protezione contro lo sporco. Particolarmente adatti sono al riguardo le coperture piatte, i soffietti o altri alloggiamenti. Poiché in alcuni casi questi accorgimenti non sono sufficienti, abbiamo inoltre messo a punto una guarnizione a labbro che, grazie al suo basso attrito, non determina alcuna apprezzabile riduzione del rendimento. Pertanto, le nostre viti a rulli planetari sono disponibili, in via opzionale, con guarnizione a labbro.

Su richiesta, possono essere fornite senza guarnizioni.

Per garantire il funzionamento delle guarnizioni, rimuovere regolarmente lo sporco.

Corsa breve

Risulta la corsa breve, se corsa ≤ lunghezza chiocciola L

Lubrificazione:

In caso di corsa breve i rulli satellite non compiono una rivoluzione completa. Non si forma pertanto un sufficiente strato di lubrificante e non si può escludere l'usura prematura. A fini di rimedio consigliamo di ridurre gli intervalli di lubrificazione ed eseguire corse più lunghe ("corse di lubrificazione").

Fattore di carico:

per corsa breve aumenta il numero di volte in cui vengono sollecitati i punti interni alle zone di carico.

Ciò può comportare una riduzione del fattore di carico.

Vogliate contattarci.

Temperature di esercizio ammesse

Le viti a rulli planetari (in versione standard) tollerano temperature con andamento costante di 60 °C misurate sulla superficie esterna della chiocciola.

Temperature di esercizio ammesse:

-10 °C ≤ T_{esercizio} ≤ 60 °C

Temperature dei cuscinetti ammesse:

-15 °C \leq T_{cuscinetto} \leq 80 °C

Applicazioni con sollecitazioni elevate e/o cicli rapidi possono causare un eccessivo sviluppo di calore. Per prevenire un riscaldamento eccessivo, Bosch Rexroth suggerisce di raffreddare la vite e/o la chiocciola. Inoltre, sono disponibili soluzioni per l'impiego con temperature superiori.

Cuscinetto

Per il calcolo della durata di vita di tutto il sistema occorre tener conto del tipo di vincolo separatamente.

Condizioni di collaudo e classi di tolleranza

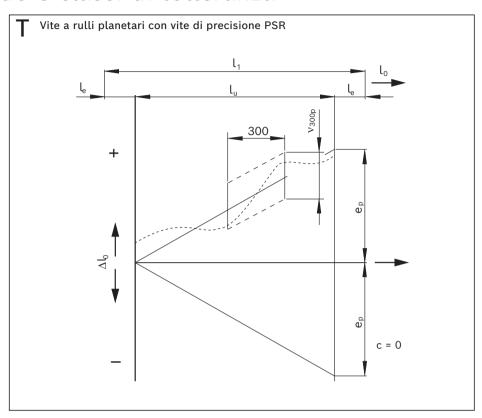
Scostamento del passo ammesso secondo ISO 3408-3

Spiegazioni delle abbreviazioni: (estratto)

l₀ = corsa nominale l₁ = lunghezza filettata

 Δl_0 = scostamento del passo

l_u = lunghezza utile


l_e = extracorsa (non vengono applicate le tolleranze di corsa e di durezza limitate per la lunghezza utile)

c = compensazione corsa (standard: c = 0)

e_p = Scostamento limite della lunghezza nominale

v_{300p} =variazione della corsa ammessa su percorso di 300 mm

 $v_{2\pi p}$ = variazione della corsa ammessa per un giro

Lunghezza utile l _u		Tolleranza per la lunghezza nominale della vite $e_p\ (\mu m)$ Classe di tolleranza			
>	≤	5	7	9	
0	100	18	44	110	
100	200	20	48	120	
200	315	23	52	130	
315		$e_p = \frac{l_u}{300} \cdot v_{300p}$			

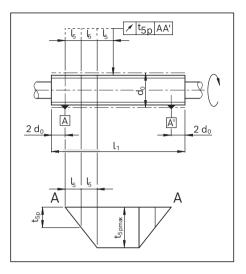
Per viti di precisione PSR vale, in linea di massima:

ν _{300p} (μm) Classe di tolleranza					
5	7	9			
23 52 130					

 $\begin{array}{l} Lunghezza \ non \ utilizzabile \ l_e \\ (extracorsa) \end{array}$

le
(mm)
40
50

Numero minimo di misurazioni entro 300 mm (intervalli di misurazione) ed extracorsa da considerare.

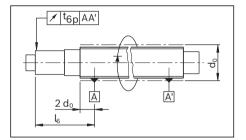

Passo P	Numero minimo di misurazioni per classe di tolleranza					
(mm)	5	7	9			
5	6	3	3			
10	3	1	1			
20	3	1	1			

Condizioni di collaudo e classi di tolleranza

Scostamenti inerenti alla rotazione della vite

secondo ISO 3408-3

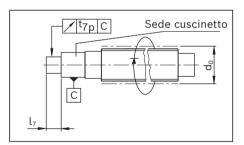
Tolleranza di rotazione concentrica t_5 del diametro esterno della vite sulla lunghezza l_5 per la determinazione della rettilineità riferita ad AA'.



d ₀		l ₅	t _{5pmax} in μm per l ₅ Classe di tolleranza		
>	≤		5	7	9
6	12	80	32	40	60
12	25	160			
25	50	315			
50	100	630			

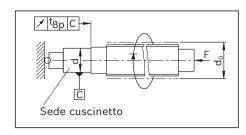
l_1/d_0		t_{5pmax} in μm per $l_1 \ge 4 l_5$			
		Classe di	tolleranza		
>	≤	5	7	9	
	40	64	80	120	
40	60	96	120	180	
60	80	160	200	300	
80	100	256	320	480	

Tolleranza di rotazione concentrica t_6 della sede del cuscinetto riferita ad AA' per $l_6 \leq l$. Il valore in tabella t_{6p} vale se $l_6 \leq l$ unghezza di riferimento I.

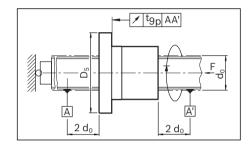

Per
$$l_6 > l$$
 vale $t_{6a} \le t_{6p} \cdot \frac{l_6}{l}$

d_0		Lunghezza di	t_{6p} in μm per $l_6 \le l$		$l_6 \leq l$	
		riferimento l	Classe di tol		leranza	
>	≤		5	7	9	
6	20	80	20	40	50	
20	50	125	25	50	63	
50	125	200	32	63	80	

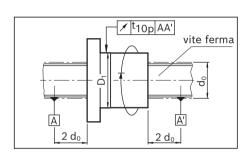
Tolleranza di rotazione concentrica t_7 del codolo terminale della vite riferita alla sede del cuscinetto per $l_7 > l$. Il valore in tabella t_{7p} vale se $l_7 \le l$ unghezza di riferimento I.


Per
$$l_7 > l$$
 vale $t_{7a} \le t_{7p} \cdot \frac{l_7}{l}$

d_0		Lunghezza di	t _{7p} in µm per l ₇		$l_7 \le l$
		riferimento l	Classe di tolle		eranza
>	≤		5	7	9
6	20	80	8	12	14
20	50	125	10	16	18
50	125	200	12	20	23
	> 6	> ≤ 6 20 20 50	> 6 20 50 80 125	> 5 6 20 80 8 20 50 125 10	riferimento l Classe di tollo 5 5 7 6 20 80 8 12 20 50 125 10 16

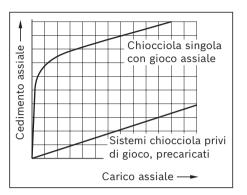

d₀ = diametro nominale

Tolleranza di oscillazione assiale t₈ dello spallamento della sede del cuscinetto della vite riferita alla sede del cuscinetto.


d ₀		t _{8p} in μm per classe di tolleranza		
>	≤	5	7	9
6	63	5	6	8
63	125	6	8	10

Tolleranza di oscillazione assiale t_9 della superficie di contatto della chiocciola riferita ad A e A' (solo per chiocciole precaricate).

Diametro fl	angia	t _{9p} in µm	
D ₅		per classe di	
		tolleranz	a
>	≤	5	7
16	32	16	20
32	63	20	25
63	125	25	32
125	250	32	40


Tolleranza di rotazione concentrica t_{10} del diametro esterno D_1 della chiocciola riferita ad Ae A' (solo per chiocciole precaricate e rotanti). Per la misurazione fissare la vite per evitarne la torsione.

Diametro esterno		t _{10p} in μm per classe di tolleranza		
D 1	1			
>	≤	5	7	
16	32	16	20	
32	63	20	25	
63	125	25	32	
125	250	32	40	

Precarico, rigidezza, momenti d'attrito

Precarico dei sistemi chiocciola Oltre alle chiocciole singole con gioco assiale limitato, Rexroth fornisce sistemi chiocciola precaricati.

Con sistemi chiocciola precaricati si verifica, al cambio del carico, una deformazione notevolmente più ridotta che con sistemi chiocciola non precaricati.

Si consiglia di ricorrere pertanto a sistemi chiocciola precaricati per applicazioni che richiedono un alto grado di rigidezza.

In funzione del carico e del tempo di funzionamento, la vite a rulli planetari è soggetta a perdita di precarico.

La rigidezza della vite è sostanzialmente inferiore a quella dell'unità chiocciola (per i dettagli vedi "Rigidezza assiale totale...").

Rigidezza

La rigidezza di una vite a rulli planetari è influenzata anche dalle parti di collegamento come cuscinetti, sedi, supporto chiocciola, ecc.

Rigidezza assiale totale R_{bs} della vite a rulli planetari

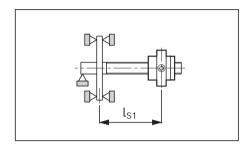
La rigidezza assiale totale R_{bs} deriva dalle rigidezze degli elementi componenti: rigidezza dei cuscinetti R_{fb} , rigidezza della vite R_{S} e rigidezza dell'unità chiocciola R_{nu} .

$$\frac{1}{R_{bs}} = \frac{1}{R_{fb}} + \frac{1}{R_{S}} + \frac{1}{R_{nu}}$$
 16

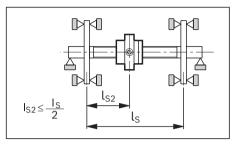
Rigidezza del cuscinetto R_{fb}

La rigidezza dei cuscinetti di vincolo corrisponde ai valori riportati nel catalogo del costruttore del cuscinetto. Le rigidezze dei cuscinetti proposti da Rexroth sono riportate nelle tabelle dimensionali del presente catalogo.

Rigidezza della vite R_S


La rigidezza della vite R_S dipende dal tipo di vincolo adottato. Le rigidezze delle viti sono riportate dalle tabelle corrispondenti.

Nota:


va notato che nella maggior parte dei casi la rigidezza R_S della vite è sostanzialmente inferiore alla rigidezza R_{nu} dell'unità chiocciola.

(mm)

1 Vincolatura assiale su un lato

2 Vincolatura assiale su entrambi i lati

 $R_S/R_{S1}/R_{S2}$ = rigidezza della vite (N/ μ m) d_0 = diametro nominale (mm)

l_s = distanza cuscinetto – cuscinetto

l_{S2} = distanza cuscinetto -

$$R_{S2} = 165 \cdot \frac{(d_0)^2}{I_{S2}} \cdot \frac{I_S}{I_{S-}I_{S2}} (N/\mu m)_{18}$$

$$R_{S1} = 165 \cdot \frac{(d_0)^2}{I_{S1}} (N/\mu m)$$
 17

La rigidezza minima della vite ha luogo al centro della vite
$$R_{\text{S2min}}. \label{eq:Rs2min}$$

(l_{S2} = $l_{S}/2$) Essa ammonta qui a:

$$R_{S2min} = 660 \cdot \frac{(d_0)^2}{ls} (N/\mu m)$$
 19

Rigidezza nell'ambito dell'unità chiocciola R_{nu}

Le rigidezze delle viti sono riportate dalle tabelle corrispondenti.

Precarico e rigidezza

d ₀ x P	Chiocciola singola FEM /	ZEM			
	Gioco assiale	(Classe di precarico	C2)		
	standard (mm)	R _{nu} (N/µm)	T_{p0} (Nm)	T_{p0} (Nm)	R _S (<u>N⋅m</u>)
		max.	min.	max.	· (μm)
20 x 5	0,03	400	0,29	0,66	66
25 x 5	1	460	0,42	0,92	103
25 x 10		290	0,42	0,92	103
30 x 5		620	0,57	1,24	149
30 x 10		420	0,57	1,24	149
39 x 5		750	0,88	1,92	251
39 x 10		500	0,88	1,92	251
48 x 5		1 080	1,24	2,72	380
48 x 10		760	1,24	2,72	380
48 x 20		460	1,24	2,72	380
60 x 10		1 030	1,79	3,94	594
60 x 20		700	1,79	3,94	594
75 x 10		1 400	2,61	5,17	928
75 x 20		1 000	2,61	5,17	928

Momenti d'attrito delle guarnizioni Coppia di tenuta delle chiocciole

 $d_0 \times P = dimensione$

 R_S = Rigidezza della vite

R_{nu} = Rigidezza della chiocciola

T_{RD} = momento torcente senza carico esterno delle 2 guarnizioni

T_{p0} = Momento torcente senza carico esterno senza guarnizione

T₀ = momento torcente senza carico esterno complessivo

 $T_0 = T_{p0} + T_{RD}$

d ₀ x P	Momento torcente senza carico esterno T _{RD} ca. (Nm)			
	Guarnizione a labbro	Nastro in poliuretano/raschiatore		
20 x 5	0,10	0		
25 x 5/10	0,10	0		
30 x 5/10	0,15	0		
39 x 5/10	0,25	0		
48 x 5/10/20	0,35	0		
60 x 10/20	0,50	0		
75 x 10/20	0,70	0		

I valori del momento torcente senza carico esterno sono misure di riferimento comprovate nella prassi per chiocciola precaricata.

Montaggio

Stato alla consegna

Le viti a rulli planetari Rexroth vengono normalmente fornite già con un primo ingrassaggio. Questo ingrassaggio iniziale consente una rilubrificazione. Sono disponibili cartucce e confezioni di grasso adatte per la rilubrificazione. Se si utilizza un altro lubrificante, verificane la miscelabilità o la compatibilità con l'ingrassaggio iniziale. In casi particolari, con il codice di ordinazione è possibile la consegna di una vite a rulli planetari solo con olio protettivo.

Attenzione

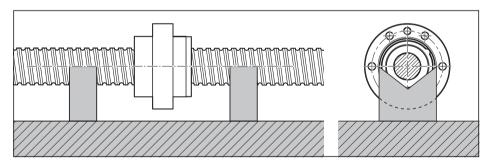
Prima della messa in funzione della macchina, assicurarsi che all'interno della chiocciola risulti il lubrificante selezionato.

Attenzione

Per sistemi con nastro in poliuretano (opzione 4) l'utente deve introdurre anche la quantità di grasso in funzione della corsa. (Vedi capitolo Lubrificazione).

Per la sgrassatura e il lavaggio è possibile ricorrere a diversi detergenti:

- detergenti acquosi
- detergenti organici


Attenzione

Dopo la pulizia, tutte le singole parti devono essere immediatamente asciugate, trattate con olio protettivo o ingrassate (pericolo di ossidazione). Osservare in ogni caso le normative vigenti (di tutela ambientale e sicurezza sul lavoro) nonché le prescrizioni in merito al detergente utilizzato (ad es. manipolazione).

Magazzinaggio

Pulizia

Le viti a rulliplanetari sono unità cinematiche di un certo valore e devono quindi essere trattate con la dovuta cautela. Per evitare che si danneggino o si sporchino, gli elementi devono essere conservati nella confezione protettiva sino al momento del montaggio. Priva dell'imballaggio, l'unità va deposta su supporti a forma di V.

Montaggio sulla macchina

Normalmente, non è necessario eliminare prima del montaggio il mezzo anticorrosione che protegge le viti.

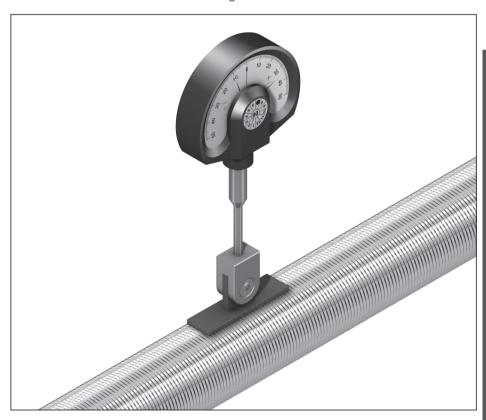
- Se sporche, pulire e oliare le viti a rulli planetari (vedi "Pulizia").
- Inserire il gruppo chiocciola nell'alloggiamento evitando urti ed errori di allineamento.
- Serrare eventualmente le viti di fissaggio con l'ausilio di una chiave dinamometrica. Per la massima coppia di serraggio per l'accoppiamento del materiale acciaio/acciaio $(R_m \ge 370 \text{ N/mm}^2)$, consultare la tabella.
- Per l'accoppiamento dei materiali acciaio/alluminio o alluminio/alluminio (R_m ≥ 280 N/mm²) valgono le coppie di serraggio massime della tabella seguente. In caso di serraggio in alluminio, la lunghezza di avvitamento deve essere pari a 1,5 volte il diametro della vite.

Coppie di serraggio per viti di fissaggio secondo VDI 2230 per $\mu_G = \mu_K = 0,125$

Viti di fissaggio

A Se soggette a sollecitazioni elevate, controllare sempre la sicurezza costruttiva delle viti!

Accoppiamento del materiale acciaio/ alluminio e alluminio/alluminio Diametro Coppia di serraggio (Nm)				
della vite	Classi di	resistenza	a	
(mm)	DIN ISO	898:		
	8.8	10.9	12.9	
M3	1,2	1,2	1,2	
M4	2,4	2,4	2,4	
M5	4,8	4,8	4,8	
M6	8,5	8,5	8,5	
M8	20,0	20,0	20,0	
M10	41,0	41,0	41,0	
M12	70,0	70,0	70,0	
M14	110,0	110,0	110,0	
M16	175,0	175,0	175,0	
M18	250,0	250,0	250,0	
M20	345,0	345,0	345,0	

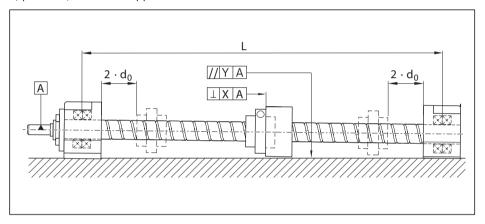

Accoppiamento del materiale acciaio/acciaio Diametro Coppia di serraggio (Nm)				
		00	` '	
della vite	Classi di	resistenz	a	
(mm)	DIN ISO	898:		
	8.8	10.9	12.9	
M3	1,3	1,8	2,1	
M4	2,7	3,8	4,6	
M5	5,5	8,0	9,5	
M6	9,5	13,0	16,0	
M8	23,0	32,0	39,0	
M10	46,0	64,0	77,0	
M12	80,0	110,0	135,0	
M14	125,0	180,0	215,0	
M16	195,0	275,0	330,0	
M18	280,0	400,0	470,0	
M20	390,0	560,0	650,0	

Allineamento della vite a rulli planetari nella macchina

Per agevolare l'allineamento della vite a rulli planetari, Rexroth mette a disposizione una sonda con superficie ribaltabile sulla vite.

Sono disponibili due pattini di misura di lunghezze differenti, utilizzati in funzione del passo della vite:

- n° di identificazione R3305 131 19: lunghezza 33 mm
- nº di identificazione R3305 131 21: lunghezza 50 mm


L'indicatore a quadrante non è compreso nella fornitura della vite a rulli planetari

Tolleranze di montaggio

Per ottenere con una vite a rulli planetari la durata di vita calcolata e la prestazione prevista, occorre tener conto dei requisiti e delle limitazioni dell'intero sistema. Gli azionamenti a vite non sono indicati per la trasmissione di forze radiali e momenti (ad es. per via di montaggio angolato). I paragrafi che seguono mostrano i principi più importanti per una costruzione conforme ai requisiti e adeguata al sistema.

Per l'utilizzo di viti a rulli planetari sono indicate tolleranze di montaggio da osservare per la configurazione della costruzione adiacente. Il linea di massima vale: quanto maggiore la precisione e il precarico della vite a rulli planetari, tanto più precisa dovrà essere realizzata anche la costruzione adiacente.

Ciò vale soprattutto per applicazioni in cui la chiocciola si sposta in prossimità del cuscinetto d'estremità, poiché in questa zona è molto grande il pericolo di deformazioni e, pertanto, di carichi supplementari.

Errore di parallelismo e indicazione dell'ortogonalità fra l'asse della vite e la superficie di contatto del supporto della chiocciola

- L = distanza dei cuscinetti d'estremità (mm)
- d₀ = diametro nominale della vite (mm)
- X = scostamento di ortogonalità ammesso (mm)
 La superficie tollerata deve risultare tra due piani a distanza X, perpendicolari all'asse di riferimento.
- Y = errore di parallelismo ammesso fra guida e asse della vite (mm)

La tabella mostra le tolleranze di montaggio più importanti per viti a rulli planetari in funzione del precarico. Rientra in queste tolleranze di montaggio l'ortogonalità della costruzione annessa delle chiocciole rispetto all'asse della vite. Osservare inoltre le tolleranze per il parallelismo fra guida e asse della vite della vite.

Qualsiasi errore di allineamento può causare il cedimento prematuro della vite a rulli planetari!

Opzione	X	Υ
Precarico	(mm)	(mm)
Gioco assiale	0,02	0,02
Precarico	0,01	0,01

Lubrificazione

Istruzioni generali di lubrificazione

▶ Tutte le informazioni sulla lubrificazione si basano sui valori di prova e sull'esperienza sul campo e sono raccomandazioni di Bosch Rexroth.

 $oldsymbol{\Lambda}$ Non è consentito l'utilizzo di lubrificanti con additivi solidi (quali, ad esempio, grafite e MoS $_2$)!

A Se si utilizzano lubrificanti diversi da quelli indicati, non si escludono eventualmente intervalli di rilubrificazione ridotti, nonché minori prestazioni in termini di corsa breve e capacità di carico. Attenzione anche a possibili interazioni chimiche tra plastiche, lubrificanti e mezzi anticorrosione.

A Se l'applicazione comporta sfide ambientali complesse (quali camera bianca, vuoto, uso alimentare, alimentazione di fluidi forti o aggressivi, temperature estreme), vi preghiamo di contattarci, poiché in questo caso sarà necessario un controllo separato ed eventualmente una selezione individuale dei lubrificanti. Tenete a portata di mano tutte le informazioni relative alla vostra applicazione.

A Per l'impiego in settori quali: alimentare, camera bianca, vuoto ecc., oppure con temperature estreme o alimentazione di fluidi, l'ingrassaggio iniziale e il mezzo protettivo standard, in fabbrica, non sono adatti o compatibili con il lubrificante utilizzato per la rilubrificazione.

Vi preghiamo di consultarci!

Al più tardi dopo 2 anni si richiede la rilubrificazione anche in condizioni d'esercizio normali per via dell'invecchiamento del grasso.

Osservare i fattori di carico ridotti riportati nelle Note tecniche.

▶ In generale, la quantità di grasso non deve essere introdotta in un unico processo, ma spesso, in piccole quantità.

Lubrificazione a grasso

Le viti a rulli planetari sono concepite per una lubrificazione con grassi lubrificanti della classe 2 NLGI. La lubrificazione a grasso offre il vantaggio che le viti a rulli planetari richiedono una rilubrificazione solo dopo lunghi percorsi.

Grasso lubrificante

Consigliamo Dynalub 510 con le proprietà seguenti:

- grasso ad alte prestazioni saponificato al litio della classe 2 NLGI secondo DIN 51818 (KP2K-20 secondo DIN 51825)
- buona impermeabilità
- resistenza alla corrosione

Il grasso omogeneo a fibre corte si presta perfettamente in condizioni ambientali convenzionali per la lubrificazione di elementi lineari:

- per carichi fino al 50% C
- Per applicazioni a corsa breve ≥ 1 mm
- per il range di velocità ammesso con viti a rulli planetari

Il foglio delle specifiche del prodotto e la scheda informativa di sicurezza sono disponibili sulla nostra pagina Web all'indirizzo www.boschrexroth.de/brl.

Numeri di identificazione per Dynalub 510:

- R3416 037 00 (cartuccia da 400 g)
- R3416 035 00 (fustino da 25 kg)

Ulteriori informazioni per Dynalub 510 si trovano a pagina 168.

Prima lubrificazione delle viti a rulli planetari

(lubrificazione iniziale)

Le viti a rulli planetari completamente montate sono soggette in fabbrica a ingrassaggio iniziale con Dynalub 510. Per versioni prive di ingrassaggio iniziale in fabbrica, introdurre nel foro di lubrificazione della chiocciola, prima della messa in funzione, la quantità di lubrificazione come da tabella 1. Osservare quanto prevede la procedura.

Per versione con nastro in poliuretano introdurre inoltre, alla messa in funzione, la quantità di grasso in funzione della corsa secondo tabella 1.

Rilubrificazione delle viti a rulli planetari

Corsa > lunghezza chiocciola L:

Una volta raggiunto l'intervallo di rilubrificazione come da diagramma 1 e 2, introdurre la quantità di rilubrificazione come da tabella 1.

Corsa < lunghezza chiocciola L:

eseguire regolarmente una corsa di lubrificazione (se possibile)! Ridurre l'intervallo di rilubrificazione di almeno un fattore 3 secondo il diagramma 1 o 2, La quantità di rilubrificazione secondo la tabella 1 può essere ridotta dello stesso fattore. Osservare quanto prevede la procedura.

	Quantità di lubrificazione (cm³)					
d ₀ x P	Nastro in poliuretano	/raschiatore	Guarnizione a labbro			
	Prima lubrificazione	Rilubrificazione	Prima lubrificazione	Rilubrificazione		
20 x 5	10 + L _s / 115	5 + L _s / 115	10	5,0		
25 x 5/10	10 + L _s / 90	5 + L _s / 90	10	5,0		
30 x 5/10	20 + L _s / 75	10 + L _s / 75	20	10,0		
39 x 5/10	35 + L _s / 60	17,5 + L _s / 60	35	17,5		
48 x 5/10/20	50 + L _s / 50	25 + L _s / 50	50	25,0		
60 x 10/20	150 + L _s / 40	75 + L _s / 40	150	75,0		
75 x 10/20	250 + L _s / 30	125 + L _s / 30	250	125,0		

Tabella 1

L_s = lunghezza corsa (mm)

La chiocciola è dotata in fabbrica di ingrassaggio iniziale, introdurre la quantità di grasso in funzione della corsa prima della messa in funzione della vite.

Applicare la quantità di grasso sulla chiocciola in più quantità parziali. Far eseguire alla chiocciola una corsa completa.

Condizioni:

- temperatura ≤ 60 °C
- intervallo di rilubrificazione valido a condizione che il lubrificante non venga centrifugato o rimosso dalla vite

Intervalli di rilubrificazione in funzione del carico

Intervallo di rilubrificazione nastro in poliuretano/raschiatore

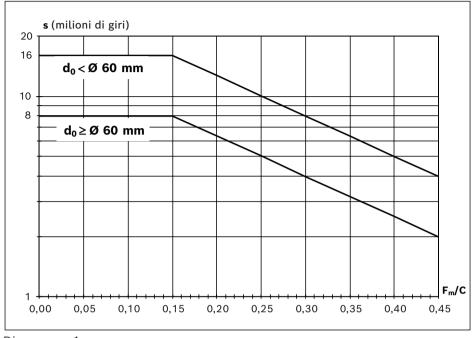


Diagramma 1

Intervallo di rilubrificazione guarnizione a labbro

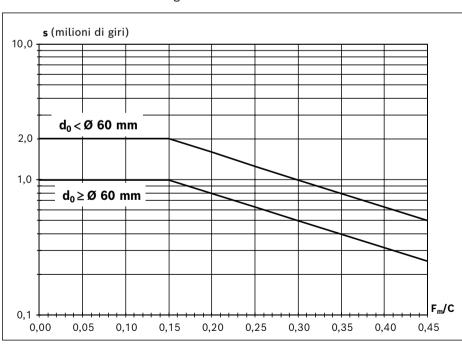


Diagramma 2

Lubrificazione a olio

Olio lubrificante

Consigliamo Shell Tonna S 220 con le proprietà seguenti:

- olio speciale demulsificante CLP o CGLP secondo DIN 51517-3 per guide bancali e guide per attrezzi
- miscela composta di oli minerali altamente raffinati e additivi
- utilizzabile anche in caso di intensa miscelazione con lubrorefrigeranti

Consigliamo l'impiego di distributori a pistone della ditta SKF. Essi dovrebbero essere installati quanto più vicino possibile al raccordo di lubrificazione della chiocciola. Evitare lunghezze elevate e diametri ridotti delle condotte; le condotte devono essere installate in ascesa.

Prima lubrificazione delle viti a rulli planetari

(lubrificazione iniziale)

Le viti a rulli planetari completamente montate sono soggette in fabbrica a ingrassaggio iniziale con Dynalub 510. Per versioni prive di ingrassaggio iniziale in fabbrica, introdurre nel foro di lubrificazione della chiocciola, prima della messa in funzione, la quantità di prima lubrificazione come da tabella 2.

Osservare quanto prevede la procedura. Per impianti di lubrificazione ininterrotta a perdita totale osservare che tutti i condotti e distributori a pistone (compreso il raccordo alla chiocciola) siano già pieni di lubrificante prima di procedere a una lubrificazione iniziale o rilubrificazione.

Norma di posizionamento

Raccordo di lubrificazione: il raccordo dovrebbe risultare possibilmente in alto (posizione di montaggio orizzontale)

Rilubrificazione delle viti a rulli planetari

Introdurre sul raccordo di lubrificazione la quantità di rilubrificazione come da tabella 2 fino al raggiungimento dell'intervallo di rilubrificazione.

Il numero di impulsi necessario a tale scopo corrisponde al quoziente intero risultante dalla quantità di rilubrificazione e dalle dimensioni del distributore a pistone. Il ciclo di lubrificazione risulta quindi dalla divisione dell'intervallo di rilubrificazione per il numero di impulsi rilevato.

d ₀ x P	Quantità di lubrificazione (cm³) Nastro in poliuretano/raschiatore/guarnizione a labbro		
	Prima lubrificazione	Rilubrificazione	
20 x 5	2,7	1,4	
25 x 5/10	3,0	1,5	
30 x 5/10	3,5	1,8	
39 x 5/10	12,0	6,0	
48 x 5/10/20	20,0	10,0	
60 x 10/20	50,0	25,0	
75 x 10/20	80,0	40,0	

Tabella 2

Intervalli di rilubrificazione in funzione del carico

Introdurre la quantità d'olio sulla chiocciola. Far eseguire alla chiocciola una corsa. Condizioni:

- temperatura ≤ 60 °C
- intervallo di rilubrificazione valido a condizione che il lubrificante non venga centrifugato o rimosso dalla vite
- Nastro in poliuretano /rschiatore solo con montaggio orizzontale

Intervallo di rilubrificazione olio

 $\begin{array}{lll} s & = & Intervallo \ di \ rilubrificazione \ (10^6 \ giri) \\ F_m = & carico \ assiale \ dinamico \\ & equivalente \ & (N) \\ C = & Fattore \ di \ carico \ dinamico \ & (N) \\ d_0 = & diametro \ nominale \ & (mm) \end{array}$

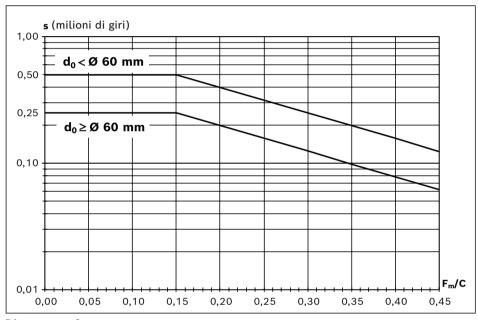


Diagramma 3

Calcolo

Su richiesta, calcolo dettagliato in base alle vostre indicazioni.

Velocità media e carico medio

 A regime di giri variabile, per il regime medio di giri n_m vale

Per il carico del cuscinetto effettivo equivalente vale:

d ₀ x P	F _{pr} (N)
20 x 5	1 180
25 x 5	1 580
25 x 10	1 010
30 x 5	1 840
30 x 10	1 470
39 x 5	2 290
39 x 10	1 960
48 x 5	2 700
48 x 10	2 410
48 x 20	1 420
60 x 10	2 910
60 x 20	2 320
75 x 10	3 800
75 x 20	3 000

- Con carico variabile e numero di giri costante vale per il carico assiale dinamico equivalente F_m
- A carico e regime di giri variabili, per il Carico assiale dinamico equivalente $F_{\rm m}$ vale

Vedi paragrafo "Formulario per servizio di calcolo" a pagina 276

Per il calcolo delle durate di vita soggette a condizioni di funzionamento variabili (regime di giri e carico variabili), vanno utilizzati i valori medi F_m e n_m .

$$n_{m} = \frac{|n_{1}| \cdot q_{t1} + |n_{2}| \cdot q_{t2} + ... + |n_{n}| \cdot q_{tn}}{100\%}$$

$$\begin{split} |F_n| & > 2.8 \cdot F_{pr} & F_{eff \, n} = |F_n| \\ |F_n| & \leq 2.8 \cdot F_{pr} & F_{eff \, n} = \left[\frac{|F_n|}{2.8 \cdot F_{pr}} + 1\right]^{\frac{3}{2}} \cdot F_{pr} \end{split}$$

$$F_{m} = \sqrt[3]{\left|F_{eff 1}\right|^{3} \cdot \frac{q_{t1}}{100\%} + \left|F_{eff 2}\right|^{3} \cdot \frac{q_{t2}}{100\%} + ... + \left|F_{eff n}\right|^{3} \cdot \frac{q_{tn}}{100\%}}$$

$$F_{m} \ = \ \frac{3}{\sqrt{\left|F_{eff \, 1}\right|^{3} \cdot \frac{\left|n_{1}\right|}{n_{m}} \cdot \frac{q_{t1}}{100\%} + \left|F_{eff \, 2}\right|^{3} \cdot \frac{\left|n_{2}\right|}{n_{m}} \cdot \frac{q_{t2}}{100\%} + ... + \left|F_{eff \, n}\right|^{3} \cdot \frac{\left|n_{n}\right|}{n_{m}} \cdot \frac{q_{tn}}{100\%}}} \quad 3$$

Durata di vita nominale

Durata di vita in giri L

Durata di vita in ore Lh

$$L = \left(\frac{C}{F_{m}}\right)^{3} \cdot 10^{6} \text{ 4} \implies C = F_{m} \cdot \sqrt[3]{\frac{L}{10^{6}}} \text{ 5} \implies F_{m} = \frac{C}{\sqrt[3]{\frac{L}{10^{6}}}} \text{ 6}$$

$$L_h = \frac{L}{n_m \cdot 60} \quad 7$$

$$L_{h \text{ macchina}} = L_{h} \frac{ED_{macchina}}{ED_{PLSA}}$$
 8

Coppia e potenza motrice

Coppia motrice M_{ta}

con trasformazione del moto rotativo in moto rettilineo:

Coppia in uscita M_{te}

con trasformazione da moto rettilineo in moto rotativo:

Potenza motrice Pa

$$M_{ta} = \frac{F_L \cdot P}{2 \ 000 \cdot \pi \cdot \eta} \ 9$$

$$M_{ta} \leq M_p\,$$

$$M_{te} = \frac{F_L \cdot P \cdot \eta'}{2 \ 000 \cdot \pi} \ 10$$

$$M_{te} \leq M_p$$

Per unità chiocciola precaricate osservare il momento torcente senza carico esterno.

$$P_a = \frac{M_{ta} \cdot n}{9.550} \quad 11$$

С	=	fattore di carico dinamico	(N)
ED _{macchina}	=	tempo d'inserzione della macchina	(%)
ED _{PSLA}	=	tempo d'inserzione della vite a sfere	(%)
F_L	=	forza di avanzamento	(N)
F_{m}	=	carico assiale dinamico equivalente	(N)
L	=	durata di vita nominale in giri	(-)
L_h	=	durata di vita nominale della vite a sfere	(h)
L _{h macchina}	=	durata di vita nominale della macchina	(h)
M_p	=	coppia motrice massima ammessa	(Nm)
M_{te}	=	coppia in uscita	(Nm)
M_{ta}	=	coppia motrice	(Nm)
n	=	numero di giri	(min ⁻¹)
n _m	=	velocità media	(min ⁻¹)
Р	=	passo	(mm)
P_a	=	potenza motrice	(kW)
η	=	rendimento ($\eta \approx 0.8$)	(-)
η΄	=	rendimento ($\eta' \approx 0.7$)	(-)

A In caso di applicazioni critiche, osservare quanto segue.

Sicurezza di carico statico So

Per ogni costruzione con contatto volvente occorre verificare il calcolo relativo alla sicurezza di carico statico.

F_{0 max} rappresenta l'ampiezza massima di carico in grado di agire sull'azionamento a vite, indipendentemente dal fatto che si tratti o meno di azione temporanea del

Può rappresentare l'ampiezza di punta di uno spettro di carico dinamico.

Per il dimensionamento valgono i dati in tabella.

Esempio di calcolo durata di vita

Condizioni d'esercizio

La durata di vita della macchina deve essere di 40 000 ore di esercizio con un tempo d'inserzione della vite a rulli planetari del 60%.

Calcoli

Regime medio di giri n_m

Carico assiale dinamico equivalente F_m con carico e numero di giri variabili

Durata di vita richiesta L (giri) La durata di vita L può essere calcolata (7) 8 mediante conversione delle formule:

Fattore di carico dinamico C

Risultato e selezione Dalle tabelle dimensionali è possibile ora selezionare:

$$C_0$$
 = fattore di carico statico (N)
 S_0 = C_0 / ($F_{0 \text{ max}}$) 12 $F_{0 \text{ max}}$ = carico statico massimo (N)
 S_0 = sicurezza di carico statico (-)

Dimensionamento del fattore di sicurezza di carico statico in riferimento alle condizioni di impiego

Condizioni di impiego	Fattore di sicurezza di carico statico S ₀
Disposizioni sospese in posizione capovolta e applicazioni potenzialmente molto pericolose	≥ 12
Sollecitazione dinamica elevata da fermo, imbrattamento.	8 - 12
Dimensionamento normale di macchine e impianti, se non si conoscono perfettamente tutti i parametri di carico o le precisioni di connessione.	5 - 8
Sono perfettamente noti tutti i dati di carico. È garantito un funzionamento a prova di vibrazioni.	3 - 5

In caso di pericoli per la sicurezza e la salute di persone prevedere un dispositivo anticaduta.

Vite a rulli planetari prevista: 30 x 5, classe di tolleranza T5

$$n_{m} = \frac{6}{100} \cdot |10| + \frac{22}{100} \cdot |30| + \frac{47}{100} \cdot |100| + \frac{25}{100} \cdot |1000|$$

$$n_{m} = 304 \text{ min}^{-1}$$

$$F_{m} = \sqrt[3]{\left|50000\right|^{3} \frac{|10|}{304} \cdot \frac{6}{100} + \left|25000\right|^{3} \cdot \frac{|30|}{304} \cdot \frac{22}{100} + \left|8000\right|^{3} \cdot \frac{|100|}{304} \cdot \frac{47}{100} + \left|2000\right|^{3} \cdot \frac{|1000|}{304} \cdot \frac{25}{100}}$$

$$F_{m} = 8.757 \text{ N}$$

$$L = L_{h} \cdot n_{m} \cdot 60$$

$$L_{h} = L_{h \text{ macchina}} \cdot \frac{ED_{PLSA}}{ED_{macchina}}$$

$$L_{h} = 40 \ 000 \cdot \frac{60}{100} = 24 \ 000 \ h$$

$$L = 24 \ 000 \cdot 304 \cdot 60$$

$$L = 437 \ 760 \ 000 \ giri$$

$$C = 8757 \cdot \sqrt[3]{\frac{437760000}{10^6}} \quad 5 \qquad C \approx 66492 \text{ N}$$

ad es. vite a rulli planetari, grandezza 30 x 5 R, con chiocciola singola flangiata FEM-E-S e vite con classe di tolleranza T5. Fattore di carico din. C = 87 KN.

tener conto del fattore di carico dinamico del cuscinetto di vincolo della vite!

A Osservare il fattore di correzione della classe di tolleranza fac! Vedere pagina 251.

Controllo

Dalle tabelle dei prodotti è possibile ora selezionare:

FEM-E-S, con classe di precarico C0 Fattore di carico Cdyn. = 87 000 N Fattore di correzione f_{ac} = 1,0 Controllo

Durata di vita in giri della vite a sfere selezionata

$$L = \left(\frac{1,0.87\ 000}{8\ 757}\right)^3 \cdot 10^6$$

 $L\approx 981\cdot 10^6~giri$

Durata di vita in ore Lh

$$L_h = \frac{981 \cdot 10^6}{304 \cdot 60}$$

 $L_h \approx 53\ 760\ ore$

FEM-E-S, con classe di precarico C2 Fattore di carico $C_{dyn.}$ = 87.000 N Fattore di correzione f_{ac} = 1,0 Controllo

Per il carico del cuscinetto effettivo equivalente vale:

$$\begin{split} |F_n| &> 2.8 \cdot F_{pr} & F_{eff\,n} = |F_n| \\ |F_n| &\leq 2.8 \cdot F_{pr} & F_{eff\,n} = \left[\frac{|F_n|}{2.8 \cdot F_{pr}} + 1\right]^{\frac{3}{2}} \cdot F_{pr} \end{split}$$

 $F_{eff n}$ = carico assiale effettivo equivalente durante la fase n (N)

 F_n = carico assiale durante la fase n (N)

F_{pr} = carico assiale interno della chiocciola dovuto a precarico (N)

$$2.8 \times F_{pr} = 2.8 \times 1.840 \text{ N} = 5152 \text{ N}$$

-
$$F_1$$
 = 50 000 N > 5 152 N \implies F_{eff1} = 50 000 N

-
$$F_2$$
 = 25 000 N > 5 152 N → F_{eff2} = 25 000 N

$$-F_3 = 8000 \text{ N} > 5152 \text{ N} \implies F_{eff3} = 8000 \text{ N}$$

- F₄ = 2 000 N < 5 152 N → F_{eff4} =
$$\left(\frac{2\ 000}{5\ 152}\ +1\right)^{1.5}$$
 · 1 840· N = 3 010 N

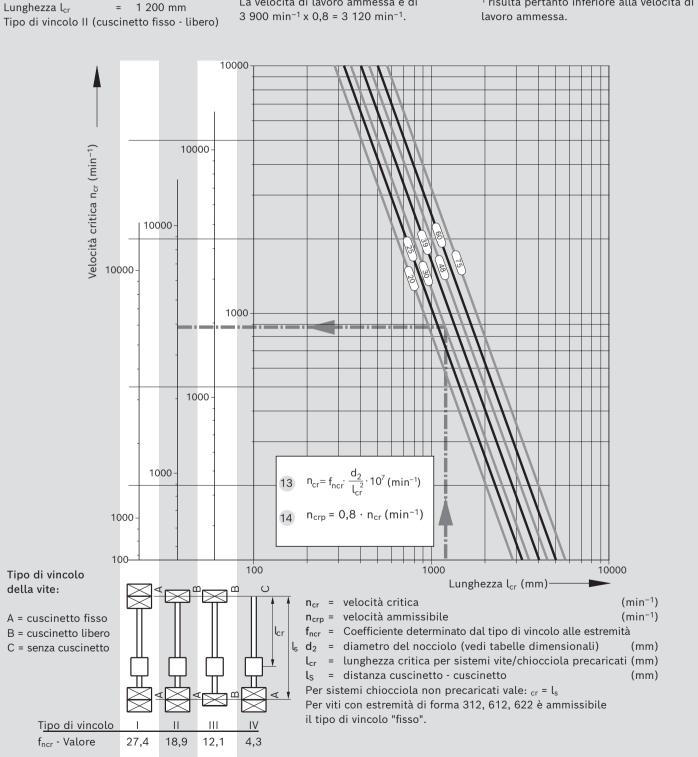
$$F_{m} = \sqrt[3]{\left|50000\right|^{3} \frac{|10|}{304} \cdot \frac{6}{100} + \left|25000\right|^{3} \frac{|30|}{304} \cdot \frac{22}{100} + \left|8000\right|^{3} \cdot \frac{|100|}{304} \cdot \frac{47}{100} + \left|3010\right|^{3} \frac{|1000|}{304} \cdot \frac{25}{100}}$$

$$L = \left(\frac{1,0.87000}{8826}\right)^3 \cdot 10^6 = 957 \cdot 10^6 \text{ giri}$$

$$L_h = \frac{957 \cdot 10^6}{304 \cdot 60} = 52 \, 467 \text{ ore}$$

La durata di vita di entrambe le viti PLSA (con gioco assiale standard / con precarico standard) è superiore alla durata di vita richiesta di 40.000 x 60% = 24.000 ore. È possibile pertanto optare per una vite PLSA, a condizione tuttavia di una verifica preliminare.

Velocità critica n_{cr}


La velocità critica n_{cr} dipende dal diametro della vite, dal tipo di vincolo e dalla lunghezza l_{cr}. Non si deve considerare la

guida da parte di una chiocciola con gioco assiale. La velocità di lavoro deve essere pari a max. l'80% della velocità critica.

Osservare il fattore di velocità o la max. velocità lineare ammessa, vedi "Note tecniche".

Esempio

Diametro della vite 30 mm 1 200 mm Dalla figura risulta una velocità critica di 3 900 min⁻¹. La velocità di lavoro ammessa è di La velocità di lavoro massima nell'esempio di calcolo di n₄ = 1 000 min-¹ risulta pertanto inferiore alla velocità di

Carico assiale ammesso sulla vite F_c (carico sulla vite)

Il carico assiale ammesso sulla vite F_c dipende dal diametro della vite, dal tipo di vincolo e dalla lunghezza non supportata l_c .

Per il carico assiale occorre tener conto di un fattore di sicurezza $s \ge 2$.

Esempio

Diametro della vite = 30 mm Lunghezza l_c = 1 200 mm

Tipo di vincolo IV (cuscinetto fisso - libero)

15 $F_c = f_{Fc} \cdot \frac{d_2^4}{l_c^2} \cdot 10^4 (N)$

$$F_{cp} = \frac{F_c}{2}(N)$$

F_c = carico assiale teorico ammesso sulla vite

F_{cp} = carico assiale ammesso sulla vite durante il funzionamento

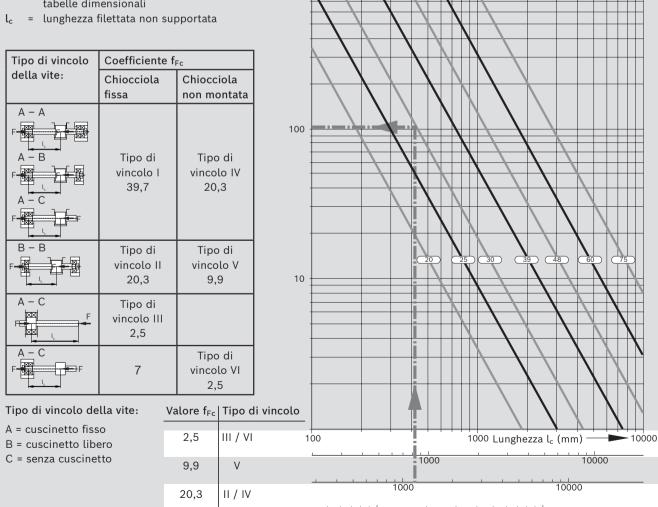
f_{Fc} = coefficiente determinato dal tipo di vincolo alle estremità

d₂ = diametro del nocciolo (mm), vedi tabelle dimensionali

39,7

In base alla figura, il carico assiale teorico ammesso è pari a 115 kN.

Con un fattore di sicurezza 2 risulta durante il funzionamento un carico assiale ammesso sulla vite di 115 kN: 2 = 57,5 kN.


10000

Carico assiale sulla vite F_c (kN)

1000

Si aggira pertanto al di sopra del carico di esercizio massimo di F_1 = 50 kN nell'esempio di calcolo.

Per ulteriori indicazioni sul carico di punta vedi la pagina seguente.

1000

10000

Avvertenze sul carico di punta

LL lunghezza efficace del carico di punta l_c è la lunghezza massima della vite non supportata esposta al flusso di forze fra chiocciola e cuscinetto di vincolo assiale (distanza) ovvero fra chiocciola ed estremità della vite.

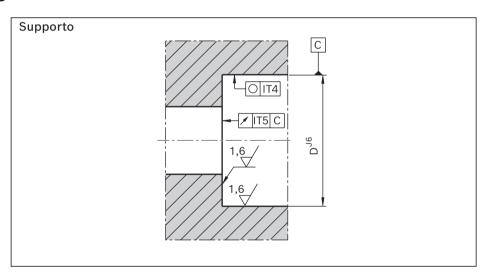
Con il carico di punta la chiocciola viene considerata come cuscinetto.

Per "chiocciola fissa" devono essere soddisfatti i presupposti seguenti:

- chiocciola senza gioco,
- montaggio rigido della chiocciola nella guida,
- la chiocciola disaccoppiata, vale a dire una guida assume le coppie avviate,
- nessuna contrazione a causa di influssi esterni (ad. es. temperatura).

Se non sono soddisfatte una o più condizioni per "chiocciola fissa", occorre optare per coefficienti per "chiocciola libera".

<u>Il tipo di vincolo III</u> risulta, ad esempio, con la cosiddetta chiocciola rotante se viene movimentata la vite. Qui la chiocciola può essere considerata come bloccata in modo sicuro.


Il tipo di vincolo IV viene applicato soltanto quando la chiocciola non viene supportata da una guida.

Cuscinetti di vincolo

Indicazioni costruttive, montaggio

Configurazione del cuscinetto

In caso di lavorazione in proprio osservare le indicazioni costruttive per supporto. Per la realizzazione di estremità viti di Rexroth vedi paragrafo "Estremità viti". Rexroth fornisce sistemi di azionamento completi comprendenti anche cuscinetti di vincolo. Il calcolo ha luogo in base alle formule conosciute dei produttori di cuscinetti volventi.

Montaggio

Cuscinetti di vincolo assiale a doppia corona di sfere a contatto obliquo e radiali rigidi a sfere

Durante il montaggio dei cuscinetti le forze assiali possono essere esercitate solo sul cuscinetto ad anello da installare. Le forze di spinta per il montaggio non devono mai gravare sui corpi volventi o sulle guarnizioni anulari! Per i cuscinetti assiali a sfere a contatto obliquo LGF e LGN i due semianelli che compongono l'anello interno non devono essere separati durante il montaggio e lo smontaggio! Le viti di fissaggio di cuscinetti avvitabili o flangiabili devono essere serrate in sequenza incrociata. La coppia di

serraggio esercitata su dette viti non deve oltrepassare il 70% del rispettivo limite di snervamento.

Per agevolarne lo smontaggio, i cuscinetti avvitabili (LGF), presentano sulla parte esterna dell'anello esterno una scanalatura circonferenziale per l'estrazione. I singoli cuscinetti di una coppia di cuscinetti delle serie LGF-C... E LGN-C... sono contrassegnati sulla parte esterna degli anelli esterni, vedi figura. Il contrassegno indica la disposizione dei cuscinetti. Con disposizione corretta, le guarnizioni anulari sono rivolte all'esterno.

Ghiera a tacche

Il serraggio delle ghiere a tacche comporta il precarico dei cuscinetti.

Per impedire eventuali manifestazioni di cedimento, serrare la ghiera a tacche con una coppia di serraggio pari al doppio del valore di M_A e quindi riallentare. Procedere quindi nuovamente con la coppia di serraggio M_A indicata. Serrare infine i grani filettati,

alternatamente, con una chiave a brugola. Per lo smontaggio, allentare per primi i grani filettati e quindi la ghiera a tacche. Il montaggio e smontaggio a regola d'arte consentono di utilizzare più volte le ghiere a tacche. Gli anelli interni dei cuscinetti sono realizzati su misura in modo da ottenere, al momento di serrare la ghiera a tacche (MA come da tabella

dimensionale) un precarico definito dei cuscinetti, sufficiente per la maggior parte delle applicazioni.

Avvertenza costruttiva

Per contrastare la coppia di serraggio MA della ghiera a tacche consigliamo di prevedere una superficie della chiave sul mandrino, oppure un foro esagonale sul lato frontale.

Lubrificazione dei cuscinetti di vincolo

I cuscinetti per viti a rulli planetari presentano una lubrificazione a grasso che ne garantisce l'affidabilità delle funzioni. Tenere comunque presente che una lubrificazione a grasso impedisce che il calore venga sottratto al cuscinetto. Per macchine utensili, la temperatura del cuscinetto non deve oltrepassare i 50 °C. Con temperature più elevate provvedere a una lubrificazione a circolazione d'olio. I cuscinetti di vincolo assiale a doppia corona di sfere a contatto obliquo delle serie LGF, LGN vengono lubrificati a vita con grasso KE2P-35 secondo DIN 51825. Per una rilubrificazione mediante i raccordi di lubrificazione presenti, possono essere considerate le quantità indicate in tabella. Con coppie di cuscinetti tener presente che ogni cuscinetto deve essere lubrificato singolarmente mediante il raccordo di lubrificazione. Ogni cuscinetto va lubrificato con la metà del valore riportato in tabella. Come intervallo massimo sono ammissibili 350 milioni di giri (con conseguente maggiore quantità). Normalmente è sufficiente l'ingrassaggio iniziale per la durata di utilizzo di una vite a rulli planetari.

Quantità di rilubrificazione per i cuscinetti di vincolo assiale a doppia corona di sfere a contatto obliquo							
Sigla		Quantit	à (cm³)	Sigla Quantità (cm³)			(cm ³)
			1)		2)		1)
LGN-B-1545	LGF-B-1560	0,49	0,38				
				LGN-C-2052	LGF-C-2068	1,74	1,09
				LGN-C-3062	LGF-C-3080	2,17	1,30
				LGN-C-3572	LGF-C-3590	3,48	1,96

- 1) Intervallo di lubrificazione ridotto di max. 10 milioni di giri
- 2) Per coppie di cuscinetti lubrificare singolarmente ogni cuscinetto mediante raccordo di lubrificazione. Lubrificare ogni cuscinetto con la metà del valore riportato in tabella.

I cuscinetti di vincolo assiale a doppia corona di sfere a contatto obliquo della serie LGS sono senza guarnizione, pertanto non sono lubrificati. Per la quantità di lubrificante necessaria per l'iniziale prima lubrificazione fare riferimento alla tabella sotto riportata:

Quantità di lu Sigla	brificazione inizia	li per cuscinetti di vincolo ass	iale a doppia corona di sfere a contatto obliquo LGS Quantità (cm³)
LGS-E-1542	LGS-E-1747	LGS-E-2047	3,26
LGS-E-2052			4,35
LGS-E-2562			5,43
LGS-E-3072			7,61
LGS-E-3580			8,70
LGS-E-4090			10,87
LGS-E-45100			13,04
LGS-E-50110			16,30
LGS-E-60130			21,74
LGS-E-70150			28,26
LGS-E-90190			44,57

Cuscinetti di vincolo

Carico risultante ed equivalente del cuscinetto

Per cuscinetti di vincolo assiale a doppia corona di sfere a contatto obliquo LGN e I GF

I cuscinetti di vincolo assiale a doppia corona di sfere a contatto obliquo sono precaricati. Il diagramma mostra il carico assiale risultante del cuscinetto F_{ax} in funzione del precarico e del carico di lavoro assiale F_{Lax} . Con carico puramente assiale F_{comb} è = F_{ax} .

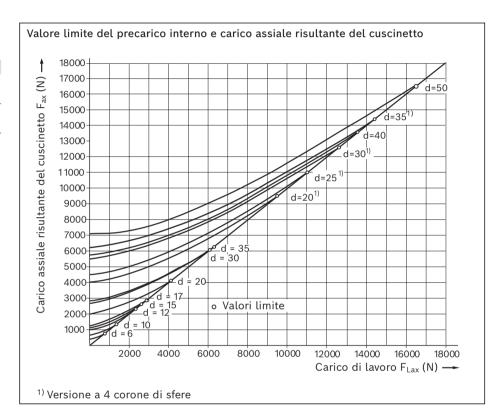
α = 60°	X	Y
$\frac{F_{ax}}{F_{rad}} \le 2,17$	1,90	0,55
$\frac{F_{ax}}{F_{rad}} > 2,17$	0,92	1,00

 α = angolo di contatto

F_{ax} = carico assiale risultante del cuscinetto

F_{Lax} = carico di lavoro

X, Y = fattore adimensionale


Quando le forze radiali non sono trascurabili, i carichi equivalenti si calcolano secondo la formula 20. I cuscinetti per viti a rulli planetari sono anche in grado di assorbire coppie massime. In linea di massima, i carichi della coppia derivanti dal peso della vite e dall'azionamento possono essere trascurati in generale per il calcolo del carico equivalente del cuscinetto.

$$F_{comb} = X \cdot F_{rad} + Y \cdot F_{ax}$$
 20

 F_{ax} = carico assiale risultante del cuscinetto (N)

 F_{comb} = carico combinato equivalente (N)

 F_{rad} = carico radiale (N)

À È obbligatoria una progettazione tecnica a parte per il rilevamento dei valori limite per tutti gli accessori (ad es. unità supporto cuscinetti di vincolo, gruppo cuscinetti di vincolo, etc.).

Formulario per servizio di calcolo

Carico statico assiale ammissibile per serie di cuscinetti LGF

Per cuscinetti della serie LGF il carico assiale statico ammesso nel senso di avvitamento è: $F_{0ax p} \le \frac{C_0}{2}$

Il fattore di carico statico assiale C₀ è indicato nelle tabelle dimensionali

Velocità media e carico medio del cuscinetto Con carico del cuscinetto gradualmente variabile lungo un lasso di tempo determinato, 22 calcolare il carico dinamicoequivalente del cuscinetto con l'equazione.

Per numero di giri variabile ricorrere alla formula. 23 Dove q_t rappresenta le quote attuali della durata in esercizio in %.

$$F_{m} = \sqrt[3]{F_{comb1}} \cdot \frac{|n_{1}|}{n_{m}} \cdot \frac{q_{t1}}{100} + F_{comb2} \cdot \frac{|n_{2}|}{n_{m}} \cdot \frac{q_{t2}}{100} + \dots + F_{combn} \cdot \frac{|n_{n}|}{n_{m}} \cdot \frac{q_{tn}}{100}$$

$$n_{m} = \frac{q_{t1}}{100} \cdot |n_{1}| + \frac{q_{t2}}{100} \cdot |n_{2}| + ... + \frac{q_{tn}}{100} \cdot |n_{n}|$$
 23

Durata di vita e sicurezza di carico

$$L = \left(\frac{C}{F_{comb}}\right)^3 \cdot 10^6 \quad 24$$

Durata di vita nominale

La durata di vita nominale viene calcolata come segue:

Attenzione:

osservare il fattore di carico dinamico della chiocciola!

Sicurezza di carico statico

Per macchine utensili, la sicurezza di carico statico non dovrebbe risultare inferiore a 4.

$$L_{h} = \frac{16 666}{n_{m}} \cdot \left[\frac{C}{F_{comb}} \right] 25$$

$$S_0 = \frac{C_0}{F_{0max}} 26$$

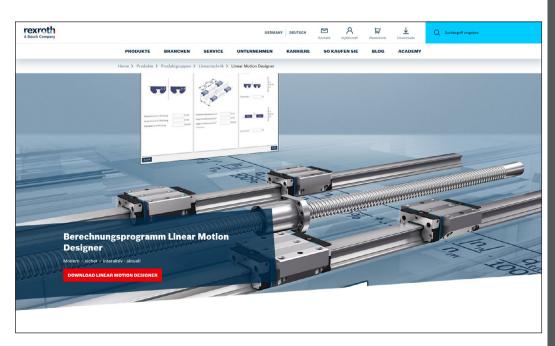
С	=	fattore di carico dinamico del cuscinetto	(N)
F _{0ax p}	=	carico statico assiale ammissibile	(N)
F_{comb}	=	carico combinato equivalente	(N)
$F_{comb1} \; \; F_{combn}$	=	carico assiale combinato equivalente nelle fasi 1 n	(N)
F_{m}	=	carico assiale dinamico equivalente	(N)
L	=	durata di vita nominale in giri	(-)
L _h	=	durata di vita nominale in ore di esercizio	(h)
$n_1 \dots n_n$	=	numeri di giri nelle fasi 1 n	(min ⁻¹)
n_{m}	=	velocità media	(min ⁻¹)
q _{t1} q _{tn}	=	tempo parziale nelle fasi 1 n	(%)

Visitate la nostra homepage ufficiale e utilizzate i configuratori gratuiti disponibili, nonché il nostro programma di progettazione Linear Motion Designer.

Informazioni approfondite

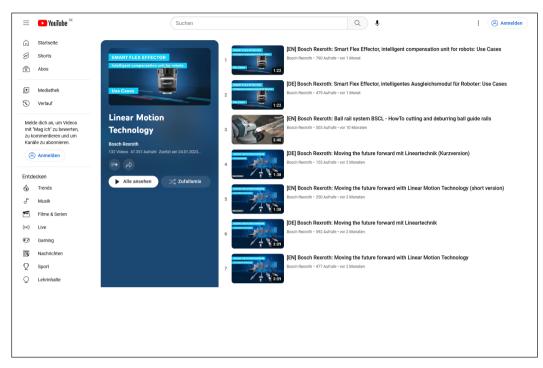
Homepage Bosch Rexroth Tecnica del movimento lineare

https://www.boschrexroth.com/it/it/prodotti/gamma-prodotti/tecnologia-lineare/



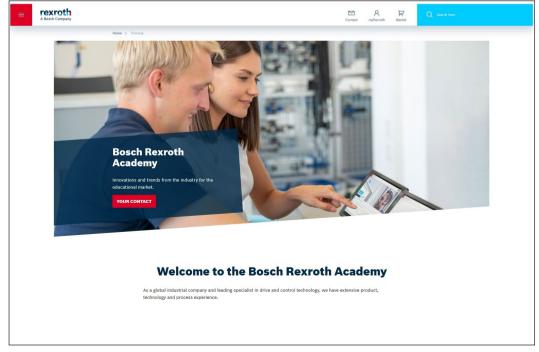
Configuratori e strumenti

www.boschrexroth.com/lmd



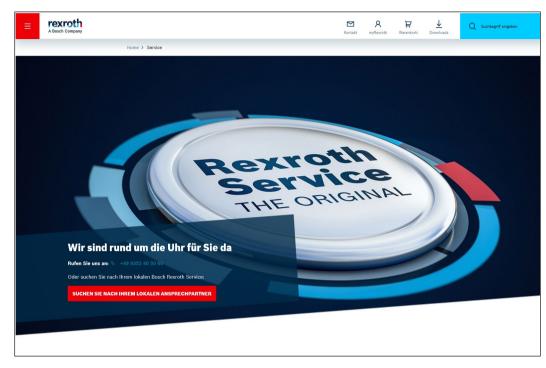
How-to: Linear Motion Technology

https://www.youtube.com/playlist?list=PLRO3LeFQeLyNYHTlzi-PeoiuRTpNREvVZ



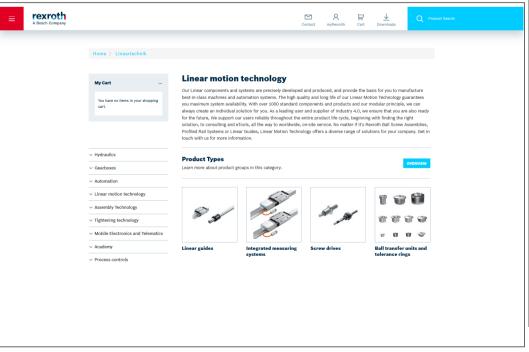
Academy

https://www.boschrexroth.com/en/de/academy/



Service

https://www.boschrexroth.com/en/de/service/



Rexroth Store

https://store.boschrexroth.com/

Bosch Rexroth AG

Ernst-Sachs-Straße 100 97424 Schweinfurt, Germany Tel. +49 9721 937-0 Fax +49 9721 937-275

Fax +49 9721 937-2 www.boschrexroth.com

Troverete il vostro referente locale ai seguenti recapiti:

www.boschrexroth.com/contact

